LETTER
Cyclopropanated Tryptamine Analogues
1481
nitriles bearing indole or sulfonamide moieties was un-
precedented.
Acknowledgment
The authors thank the ‘Conseil Régional de Champagne-Ardenne’
for a Ph.D. fellowship (C.S.) and the CNRS for financial support.
Mass spectroscopic measurements by P. Sigaut and D. Harakat and
NMR analyses by C. Petermann and H. Baillia are gratefully ack-
nowledged.
Nitrile 10a (R = H, R1 = SO2Ph) was used as a model com-
pound to determine the optimal conditions for the cyclo-
propanation reaction. When ethylmagnesium bromide (2
equiv) was added to a solution of 10a and Ti(Oi-Pr)4 (1.1
equiv) in THF, followed by the addition of BF3·OEt2 (2
equiv), the cyclopropylamine 12a was obtained, albeit in
a moderate yield (37%). The direct addition of the Grig-
nard reagent to 10a was also observed, leading to the cor-
responding ketone in a significant yield (21%).14 Efforts
to increase the yield of 12a by modifying the solvent or
the temperature failed.
References and Notes
(1) (a) Vilsmaier, E. In The Chemistry of the Cyclopropyl
Group; Rappoport, Z., Ed.; Wiley: New York, 1987, 1341.
(b) Houben-Weyl, Vol. E17a-c; de Meijere, A., Ed.;
Thieme: Stuttgart, 1997.
(2) (a) Suckling, C. J. Angew. Chem., Int. Ed. Engl. 1988, 27,
537. (b) Salaün, J. Top. Curr. Chem. 2000, 207, 1.
(3) (a) Wise, R.; Andrews, J. M.; Edwards, L. J. Antimicrob.
Agents Chemother. 1983, 23, 559. (b) Todo, Y.; Nitta, J.;
Miyajima, M.; Fukuoka, Y.; Yamashiro, Y.; Nishida, N.;
Saikawa, I.; Narita, H. Chem. Pharm. Bull. 1994, 42, 2063.
(c) Brighty, K. E.; Castaldi, M. J. Synlett 1996, 1097.
(d) Högberg, M.; Sahlberg, C.; Engelhardt, P.; Noréen, R.;
Kangasmetsä, J.; Johansson, N. G.; Öberg, B.; Vrang, L.;
Zhang, H.; Sahlberg, B.-L.; Unge, T.; Lövgren, S.; Fridborg,
K.; Bäckbro, K. J. Med. Chem. 1999, 42, 4150. (e) Daluge,
S. M.; Martin, M. T.; Sickles, B. R.; Livingston, D. A.
Nucleosides Nucleotides 2000, 19, 297. (f) Tichenor, M. S.;
MacMillan, K. S.; Stover, J. S.; Wolkenberg, S. E.; Pavani,
M. G.; Zanella, L.; Zaid, A. N.; Spalluto, G.; Rayl, T. J.;
Hwang, I.; Baraldi, P. G.; Boger, D. L. J. Am. Chem. Soc.
2007, 129, 14092; and references therein.
We recently observed that MeTi(Oi-Pr)3 can be a valuable
alternative to Ti(Oi-Pr)4 in the cyclopropanation of
nitriles13c and imides.15 This reagent, which was intro-
duced by de Meijere for the cyclopropanation of tertiary
amides, requires only one equivalent of Grignard reagent
to generate the titanacyclopropane (Scheme 2, path ii).16
In this way side reactions due to an excess of the Grignard
reagent can be limited.
Ti(Oi-Pr)4
+
R
(i)
MeTi(Oi-Pr)3
+
(ii)
Ti(Oi-Pr)2
– MeH
–
R
MgX
R
A
2
MgX
R
(4) (a) Fujita, T. J. Med. Chem. 1973, 16, 923. (b) N-
Cyclopropyltryptamine was also described as a potent
monoamine oxidase inhibitor. See: Winn, M.; Horrom, B.
W.; Rasmussen, R. R.; Chappell, E. B.; Plotnikoff, N. P.
J. Med. Chem. 1975, 18, 437.
BF3
R'
R'
BF3⋅OEt2
N
A
N
R'CN
Ti(Oi-Pr)2
Ti(Oi-Pr)2
R
B
R
(5) Shimamoto, K.; Ishida, M.; Shinozaki, H.; Ohfune, Y.
J. Org. Chem. 1991, 56, 4167.
R
(6) Vangveragong, S.; Kanthasamy, A.; Lucaites, V. L.; Nelson,
D. L.; Nichols, D. E. J. Med. Chem. 1998, 41, 4995.
(7) Tsotinis, A.; Vlachou, M.; Papahatjis, D. P.;
Calogeropoulou, T.; Nikas, S. P.; Garratt, P. J.; Piccio, V.;
Vonhoff, S.; Davidson, K.; Teh, M.-T.; Sugden, D. J. Med.
Chem. 2006, 49, 3509.
(8) Raoul, M.; Patigny, D.; Fabis, F.; Dauphin, F.; Rault, S.;
Sapi, J.; Laronze, J.-Y. J. Enzym. Inhib. Med. Chem. 2006,
251.
(9) (a) Glennon, R. A. J. Med. Chem. 2003, 46, 2795.
(b) Holenz, J.; Mercè, R.; Diaz, J. L.; Guitart, X.; Codony,
X.; Dordal, A.; Romero, G.; Torrens, A.; Mas, J.; Andaluz,
B.; Hernandez, S.; Monroy, X.; Sanchez, E.; Hernandez, E.;
Pérez, R.; Cubi, R.; Sanfeliu, O.; Bushchmann, H. J. Med.
Chem. 2005, 48, 1781.
(10) Sapi, J.; Grébille, Y.; Laronze, J.-Y.; Lévy, J. Synthesis
1992, 383.
(11) (a) Bertus, P.; Szymoniak, J. Chem. Commun. 2001, 1792.
(b) For a review, see: Bertus, P.; Szymoniak, J. Synlett 2007,
1346.
(12) An alternative approach involving the titanium-mediated
cyclopropanation of N,N-dialkylamides should be
envisioned, but requires the preparation of the amides. For
the reaction, see: (a) Chaplinski, V.; de Meijere, A. Angew.
Chem., Int. Ed. Engl. 1996, 35, 413. (b) de Meijere, A.;
Kozhushkov, S. I.; Savchenko, A. I. J. Organomet. Chem.
2004, 689, 2033. For related applications, see: (c) Cao, B.;
Xiao, D.; Joullié, M. M. Org. Lett. 1999, 1, 1799.
(d) Ouhamou, N.; Six, Y. Org. Biomol. Chem. 2003, 1,
R'
NH2
Scheme 2
When MeTi(Oi-Pr)3 (1.2 equiv) and EtMgBr (1.2 equiv)
were used, 12a was obtained in an increased yield (59%),
but 10% of 10a remained unreacted. Increase of the
amount of both reagents to 1.5 equivalents led to the total
consumption of the starting material giving 12a in 66%
isolated yield. This procedure was used for the nitriles 10
and 11, to afford the primary cyclopropylamines 12a–d
and 13a,b (Table 1).17,18 An additional substitution at the
cyclopropane moiety is possible, as exemplified by the
use of n-BuMgBr (entry 4). The presence of the vinyl
moiety on the indole core is quite well tolerated, as shown
by the formation of 13a and 13b (entries 5 and 6).19
The final N,N-dimethylation of the cyclopropylamines 12
and 13 using HCHO–NaBH3CN–AcOH–MeOH system
furnished the corresponding cyclopropanated tryptamines
6a–d and 7a,b in fair to high yields (Table 1, step 2).20,21
In conclusion, a new class of N,N-dimethyltryptamines
was prepared by a MeTi(Oi-Pr)3-promoted cyclopropana-
tion. Evaluation of its 5-HT6 binding activity and other
structural modifications are currently in progress.
Synlett 2008, No. 10, 1479–1482 © Thieme Stuttgart · New York