K. C. Majumdar et al. / Tetrahedron Letters 49 (2008) 5597–5600
5599
.
O
SPh
O
O
SPh
.
b
SPh
a
7--exo-trig
Path b
.
4
2
6
7
8-endo-trig
Neophyl
rearrangement
a
Path
H
H
O
O
O
PhSH
SPh
SPh
.
SPh
.
5
3
Scheme 4. Mechanism of the sulfanyl radical addition–cyclization reaction.
6. (a) Nohara, T.; Kinjo, J.; Furusawa, J.; Sakai, Y.; Inoue, M. Phytochemistry 1993,
33, 1207; (b) Shirataki, Y.; Tagaya, Y.; Yokoe, I.; Komatsu, M. Chem. Pharm. Bull.
1987, 35, 1637.
7. (a) Biswas, B.; Sen, P. K.; Venkateswaran, R. V. Tetrahedron 2007, 63, 12026; (b)
Liang, Z.; Ma, S.; Yu, J.; Xu, R. Tetrahedron 2007, 63, 977; (c) Sato, K.; Yoshimura,
T.; Shindo, M.; Shishido, K. J. Org. Chem. 2001, 66, 309; (d) Fuminao, D.;
Takahisa, O.; Takeshi, S.; Shigeru, N. Tetrahedron Lett. 2003, 44, 4877; (e)
Grimm, E. L.; Levac, S.; Trimble, L. A. Tetrahedron Lett. 1994, 35, 6847.
8. Stefinovic, M.; Snieckus, V. J. Org. Chem. 1998, 63, 2808.
9. (a) Sabui, S. K.; Venkateswaran, R. V. Tetrahedron Lett. 2004, 45, 2047; (b)
Kamei, T.; Shindo, M.; Shishido, K. Tetrahedron Lett. 2003, 44, 8505; (c) Kishuku,
H.; Shindo, M.; Shishido, K. Chem. Commun. 2003, 350; (d) Kahnberg, P.; Lee, C.
W.; Grubbs, R. H.; Sterner, O. Tetrahedron 2002, 58, 5203.
10. (a) Nguyen, V. T. H.; Bellur, E.; Fischer, C.; Langer, P. Tetrahedron 2007, 63, 8037;
(b) Nguyen, V. T. H.; Bellur, E.; Langer, P. Tetrahedron Lett. 2006, 47, 113.
11. (a) Giese, B. Radicals in organic synthesis: Formation of Carbon–Carbon Bonds;
Pergamon: New York, 1986; (b) Radicals in organic synthesis; Renaud, P., Sibi, M.
P., Eds.; Wiley-VCH: Weinheim, 2001; Vol. 1; (c) Malacria, M. Chem. Rev. 1996,
96, 289; (d) Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. Rev. 1991, 91, 1237;
(e) Majumdar, K. C.; Basu, P. K. Heterocycles 2002, 57, 2413; (f) Majumdar, K. C.;
Basu, P. K.; Mukhopadhyay, P. P. Tetrahedron 2004, 60, 6239; (g) Majumdar, K.
C.; Alam, S. Org. Lett. 2006, 8, 4059.
tion was carried out in refluxing toluene with PhSH (2 equiv) and
AIBN (2 equiv), the 8-endo cyclized product was obtained in 88%
yield (Scheme 3).
The proposed mechanism of the thiophenol-mediated reaction
is depicted in Scheme 4. The phenylsulfanyl radical, generated
from thiophenol and AIBN, adds to the terminal alkyne of enyne
2 to form vinyl radical 4. The high E-selectivity of double bond
formation may be explained by the trapping of the intermediary
vinyl radical 4 (via as 8-endo-trig mode, path a) from the opposite
face, followed by hydride radical transfer from thiophenol to the
radical intermediate 5 to afford product 3. An alternative pathway
(path b), a 7-exo cyclization process followed by 1,2-alkenyl migra-
tion via a cyclopropyl methyl radical 7 (neophyl rearrangement)
would also lead to the same product 3. This may be an indication
that the reaction is proceeds via a ring expansion process (Scheme
4, path b), that is ring opening of the cyclopropylmethyl radical
intermediate may be stereoselective.
12. (a) Cid, M. M.; Dominguez, D.; Castedo, L.; Vazquez-Lopez, E. M. Tetrahedron
1999, 55, 5599; (b) Magono, H.; Hara, S. Tetrahedron Lett. 2004, 45, 4329; (c)
Rodriguez, G.; Cid, M. M.; Saa, C.; Castedo, L.; Dominguez, D. J. Org. Chem. 1996,
61, 2780; (d) Wu, S.; Journet, M.; Malacria, M. Tetrahedron 1994, 35, 8601; (e)
Fidalgo, J.; Castedo, L.; Dominguez, D. Tetrahedron 1993, 34, 7317; (f) Alcaide,
B.; Almendros, P.; Aragoncillo, C. J. Org. Chem. 2001, 66, 1612; (g) Gibson, S. E.;
Guillo, N.; Tozer, M. J. Chem. Commun. 1997, 1, 637; (h) Blake, A. J.;
Hollingworth, G. J.; Pattenden, G. Synlett 1996, 643; (i) Nandi, A.;
Chattopadhyay, P. Tetrahedron Lett. 2002, 43, 5977; (j) Shanmugam, P.;
Rajasingh, P. Tetrahedron Lett. 2005, 46, 3369.
13. (a) Ingham, R. K.; Rosenberg, S. D.; Gilman, H. Chem. Rev. 1960, 60, 459; (b)
Boyer, I. J. Toxicology 1989, 55, 253.
14. (a) Studer, A.; Amrein, S. Synthesis 2002, 835; (b) Bertrand, M. P.; Ferreri, C. In
Radicals in Organic Synthesis; Renaud, P., Sibi, M. P., Eds.; Wiley-VCH:
Weinheim, 2001; Vol. 2, p 485; (c) Baguley, P. A.; Walton, J. C. Angew. Chem.,
Int. Ed. 1998, 37, 3072.
In conclusion, we have developed a new and efficient method
for the synthesis of benzoxocine derivatives via sulfanyl radical
addition–cyclization. Alkenyl radicals are generated from readily
available terminal alkynes and thiophenol. The procedure
presented here is more economic than other methods for the syn-
thesis of benzoxocine derivatives. Moreover, during the cyclization
process, a phenylthio moiety is incorporated into the final prod-
ucts. This functionalization is particularly attractive for further
transformation of the products.21 The application of this strategy
for the synthesis of benzoxepine and benzoxocine related natural
products is currently underway in our laboratory.
15. (a) Mandal, S. K.; Roy, S. C. Tetrahedron Lett. 2006, 47, 1599; (b) Mandal, S. K.;
Roy, S. C. Tetrahedron 2007, 63, 11341.
Acknowledgements
16. (a) Miyata, O.; Ozawa, Y.; Ninomiya, I.; Naito, T. Tetrahedron 2000, 56, 6199; (b)
Miyata, O.; Kajisa, S.; Ueda, M.; Yamauchi, M.; Naito, T. Chem. Pharm. Bull. 2005,
53, 995; (c) Miyata, O.; Yamanaka, K.; Ueda, M.; Naito, T. Arkivoc 2003, viii, 220;
(d) Miyata, O.; Nishiguchi, A.; Ninomiya, I.; Aoe, K.; Okamura, K.; Naito, T. J. Org.
Chem. 2000, 65, 6922; (e) Miyata, O.; Nakajima, E.; Naito, T. Chem. Pharm. Bull.
2001, 49, 213.
17. (a) Miyata, O.; Naito, T. C.R. Acad. Sci. Paris Chem. 2001, 4, 401; (b) Denes, F.;
Beaufils, F.; Renaud, P. Org. Lett. 2007, 21, 4375; (c) Harrowven, D. C.; Maj, P. J.;
Bradley, M. Tetrahedron Lett. 2003, 44, 503; (d) Fernandez, M.; Alonso, R. Org.
Lett. 2005, 7, 11; (e) Martinez-Grau, A.; Curran, D. P. Tetrahedron Lett. 1997, 53,
5679; (f) Burke, S. D.; Jung, K. W. Tetrahedron Lett. 1994, 35, 5837; (g) Beaufils,
F.; Denes, F.; Renaud, P. Org. Lett. 2004, 6, 2563; (h) Capella, L.; Montevcehi, P.
C.; Navacehia, M. L. J. Org. Chem. 1996, 61, 6783; (i) Benati, L.; Calestani, G.;
Leardini, R.; Minozzi, M.; Nanni, D.; Spagnolo, P.; Strazzari, S. Org. Lett. 2003, 5,
1313; (j) Carta, P.; Puljic, N.; Robert, C.; Dhimane, A. L.; Fensterbank, L.; Lacote,
E.; Malacria, M. Org. Lett. 2007, 6, 1061.
We thank the CSIR (New Delhi) and the DST (New Delhi) for
financial assistance. Two of us (P.D. and K.R.), and one of us
(P.K.M.), are thankful to the CSIR and UGC (New Delhi), respec-
tively, for their fellowships.
References and notes
1. (a) Murata, M.; Yasumoto, T. Nat. Prod. Rep. 2000, 17, 293; (b) Asakawa, Y.;
Kusube, E.; Takemoto, T.; Suire, C. Phytochemistry 1978, 17, 2115; (c) Murata,
M.; Legrand, A.-M.; Ishibashi, Y.; Yasumoto, T. J. Am. Chem. Soc. 1989, 111, 8929;
(d) Macias, F. A.; Molinillo, J. M. G.; Varela, R. M.; Torres, A.; Fronczek, F. R.
Tetrahedron Lett. 1993, 34, 1999.
18. (a) Majumdar, K. C.; Debnath, P.; Maji, P. K. Tetrahedron Lett. 2007, 48, 5265; (b)
Majumdar, K. C.; Debnath, P.; Alam, S.; Maji, P. K. Tetrahedron Lett. 2007, 48,
7031.
2. Crews, P.; Harrison, B. J. Org. Chem. 1997, 62, 2646.
3. Macias, F. A.; Molinillo, J. M. G.; Varela, R. M.; Torres, A.; Fronczek, F. R. J. Org.
Chem. 1994, 59, 8261.
19. Majumdar, K. C.; Maji, P. K.; Roy, K.; Debnath, P. Tetrahedron Lett. 2007, 48,
9124.
4. (a) Macias, F. A.; Varela, R. M.; Torres, A.; Molinillo, J. M. G. J. Nat. Prod. 1999, 62,
1636; (b) Macias, F. A.; Varela, R. M.; Torres, A.; Molinillo, J. M. G.; Fronczek, F.
R. Tetrahedron Lett. 1993, 34, 1999; (c) Takabatake, K.; Nishi, I.; Shindo, M.;
Shishido, K. J. Chem. Soc., Perkin Trans. 1 2000, 1807.
5. (a) Oh, S. R.; Kim, D. S.; Lee, I. S.; Jung, K. Y.; Lee, J. J.; Lee, H.-K. Planta
Med. 1998, 64, 456; (b) Nagai, M.; Nagumo, S. Chem. Pharm. Bull. 1987, 35,
3002.
20. All new compounds reported here gave satisfactory spectroscopic and/or
analytical data. Data for compound 3a: Yield: 82%; solid; mp: 88–90 °C
(petroleum ether); IR (KBr):
m ;
= 2937, 1582, 1457, 1255, 1024 cmÀ1 1H NMR
(CDCl3, 500 MHz): dH 1.76–1.81 (m, 2H), 2.32 (s, 3H), 2.44 (t, J = 6.1 Hz, 2H),
2.83 (t, J = 5.9 Hz, 2H), 4.46 (s, 2H), 5.90 (s, 1H), 6.82 (d, J = 8.5 Hz, 1H),