A R T I C L E S
Chaumontet et al.
Table 1. Optimization of C-H Activation Reaction Parameters
depending on the nature of the activated alkyl. This palladacycle
subsequently evolves by intramolecular C-C coupling to give
carbocycles 2-3 or ꢀ-H elimination to form olefins 4. In
particular, we were able to observe the direct formation of
benzocyclobutenes 2 by C(sp3)-H activation of benzylic methyl
groups.7a,6c,9
conversion GC yield
(%)b
entry solvent
base
Pd source
liganda
(%)b
1
2
3
4
5
6
7
8
9
DMF
DMA
NMP
K2CO3 Pd(OAc)2
K2CO3 Pd(OAc)2
K2CO3 Pd(OAc)2
P(o-tol)3
P(o-tol)3
P(o-tol)3
P(o-tol)3
P(o-tol)3
P(o-tol)3
P(o-tol)3
P(o-tol)3
P(o-tol)3
P(o-tol)3
P(o-tol)3
P(o-tol)3
100
72
100
35
80
40
30
8
54
7
67
38
47
22
51
9
10
1
14
1
xylenes K2CO3 Pd(OAc)2
DMF
DMF
DMF
DMF
DMF
KHCO3 Pd(OAc)2
Na2CO3 Pd(OAc)2
Cs2CO3 Pd(OAc)2
KF
Pd(OAc)2
K3PO4 Pd(OAc)2
KOAc Pd(OAc)2
iPrNEt2 Pd(OAc)2
K2CO3 Pd2dba3
K2CO3 PdCl2(MeCN)2 P(o-tol)3
K2CO3 PdCl2(MeCN)2 F-TOTP
K2CO3 PdCl2(MeCN)2 MeO-TOTP
10 DMF
11 DMF
12 DMF
13 DMF
14 DMF
15 DMF
16 DMF
17 DMF
18 DMF
19 DMF
20 DMF
21 DMF
22 DMF
23 DMF
60
1
100
100
88
100
23
19
5
70
73
52
71
2
1
2
13
89
93 (73)
90
8
Benzocyclobutenes (BCB) are both important structural
elements in active pharmaceutical ingredients and valuable
intermediates for organic synthesis.10 In particular, they undergo
thermal electrocyclic ring-opening to give ortho-xylylenes that
can subsequently react in pericyclic reactions such as Diels-Alder
cycloadditions.11 This property was largely exploited in the past
decades in the total synthesis of polycyclic natural products.10
Despite their high synthetic value, very few general and
chemoselective methods exist for the preparation of function-
alized BCB, which seriously limits their availability and their
use as synthetic intermediates. In this article, we describe a
general method for the preparation of substituted BCB by
K2CO3 PdCl2(MeCN)2 PPh3
K2CO3 PdCl2(MeCN)2
d
dppp
K2CO3 PdCl2(MeCN)2 (Cy3PH)BF4
K2CO3 PdCl2(MeCN)2 DavePhos
K2CO3 PdCl2(MeCN)2 JohnPhos
K2CO3 PdCl2(MeCN)2 (tBu3PH)BF4
K2CO3 PdCl2(MeCN)2 Q-Phos
K2CO3 PdCl2(MeCN)2 IPr
43
100
100
100
26
c
a 10 or
5
mol% ligand for PdII or Pd0 source, respectively.
b Calculated using tetradecane as internal standard. Other observed
products included the starting bromobenzene 1a and the corresponding
proto-debrominated product. c Yield of the isolated product. d 5 mol%.
(5) Recent work in allylic C-H activation: (a) Chen, M. S.; Prabagaran,
N.; Labenz, N. A.; White, M. C. J. Am. Chem. Soc. 2005, 127, 6970.
(b) Delcamp, J. H.; White, M. C. J. Am. Chem. Soc. 2006, 128, 15076.
(c) Olsson, V. J.; Szabo´, K. J. Angew. Chem., Int. Ed. 2007, 46, 6891.
(d) Fraunhoffer, K. J.; White, M. C. J. Am. Chem. Soc. 2007, 129,
7274. (e) Reed, S. A.; White, M. C. J. Am. Chem. Soc. 2008, 130,
3316. (f) Covell, D. J.; White, M. C. Angew. Chem., Int. Ed. 2008,
47, 6448.
palladium-catalyzed C-H activation. We show that this reaction
is compatible with a number of functional groups, which should
stimulate new developments in the chemistry of BCB. In
addition, we report experimental observations and DFT calcula-
tions on the key C-H activation reaction that show for the first
time the dual role of the carbonate base in the C-H bond
cleavage as well as in palladium 1,4-migration.
(6) (a) Dyker, G. Angew. Chem., Int. Ed. Engl. 1992, 31, 1023. (b) Dyker,
G. J. Org. Chem. 1993, 58, 6426. (c) Dyker, G. Angew. Chem., Int.
Ed. Engl. 1994, 33, 103. (d) Toivola, R. J.; Savilampi, S. K.; Koskinen,
A. M. P. Tetrahedron Lett. 2000, 41, 6207. (e) Catellani, M.; Motti,
E.; Ghelli, S. Chem. Commun. 2000, 2003. (f) Sole´, D.; Vallverdu´,
L.; Solans, X.; Font-Bardia, M. Chem. Commun. 2005, 2738. (g)
Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am.
Chem. Soc. 2005, 127, 4685. (h) Dong, C.-G.; Hu, Q.-S. Angew.
Chem., Int. Ed. 2006, 45, 2289. (i) Ren, H.; Knochel, P. Angew. Chem.,
Int. Ed. 2006, 45, 3462. (j) Ren, H.; Zi, L.; Knochel, P. Chem. Asian
J. 2007, 2, 416. (k) Liron, F.; Knochel, P. Tetrahedron Lett. 2007,
48, 4943. (l) Lafrance, M.; Gorelsky, S. I.; Fagnou, K. J. Am. Chem.
Soc. 2007, 129, 14570. (m) Dong, C.-G.; Hu, Q.-S. Tetrahedron 2008,
64, 2537. (n) Motti, E.; Catellani, M. AdV. Synth. Catal. 2008, 350,
565. (o) Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2008,
10, 1759. (p) Salcedo, A.; Neuville, L.; Zhu, J. J. Org. Chem. 2008,
73, 3600.
Results and Discussion
1. Conditions Optimization. We quickly discovered that the
initial set of conditions that were used in our first report was
not optimal for BCB synthesis (Table 1, entry 1).7a Using
bromobenzene 1a as model substrate for the C-H activation
giving BCB 2a, all reaction parameters were reinvestigated.
Representative examples of modifications of the solvent, base,
palladium source and ligand are listed in Table 1 with fixed
temperature (150 °C) and reaction time (1.5 h). First, it appears
that the nature of both the solvent (entries 1-4) and the base
(entries 1, 5-11) is crucial to achieve high yields, DMF and
potassium carbonate providing the optimal combination. It is
noteworthy that the carbonate countercation had also a major
impact on the reaction efficiency (entries 1, 6-7). In contrast,
the nature of the palladium source was relatively indifferent
(entries 1, 12-13). Next, the palladium ligand was varied using
dichlorobis(acetonitrile)palladium(II) as precatalyst (entries
13-23 and Figure 1). The nature of the ligand had again a
profound influence on the reaction yield, with bulky, electron-
rich monophosphines of the type RPtBu2 giving the highest yield
in 2a (entries 20-22). Among these,12 tri-tert-butylphosphine,
(7) (a) Baudoin, O.; Herrbach, A.; Gue´ritte, F. Angew. Chem., Int. Ed.
2003, 42, 5736. (b) Hitce, J.; Retailleau, P.; Baudoin, O. Chem.-
Eur. J. 2007, 13, 792. (c) Hitce, J.; Baudoin, O. AdV. Synth. Catal.
2007, 349, 2054.
(8) (a) Baudry, D.; Ephritikhine, M.; Felkin, H.; Holmes-Smith, R.
J. Chem. Soc., Chem. Commun. 1983, 788. (b) Burk, M. J.; Crabtree,
R. H. J. Am. Chem. Soc. 1987, 109, 8025. (c) Chen, H.; Schlecht, S.;
Semple, T. C.; Hartwig, J. F. Science 2000, 287, 1995. (d) Lawrence,
J. D.; Takahashi, M.; Bae, C.; Hartwig, J. F. J. Am. Chem. Soc. 2004,
126, 15334. (e) Murphy, J. M.; Lawrence, J. D.; Kawamura, K.;
Incarvito, C.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 13684.
(9) Catellani, M.; Ferioli, L. Synthesis 1996, 769.
(10) (a) Mehta, G.; Kotha, S. Tetrahedron 2001, 57, 625. (b) Sadana, A. K.;
Saini, R. K.; Billups, W. E. Chem. ReV. 2003, 103, 1539.
(11) (a) Oppolzer, W. A. Synthesis 1978, 793. (b) Charlton, J. L.; Alauddin,
M. M. Tetrahedron 1987, 43, 2873. (c) Nemoto, H.; Fukumoto, K.
Tetrahedron 1998, 54, 5425.
9
15158 J. AM. CHEM. SOC. VOL. 130, NO. 45, 2008