5930
S. Saha et al. / Tetrahedron Letters 49 (2008) 5928–5930
Fe(III)
Ph
Supplementary data
O
O
Acetone
FeCl3
Ph
Ph
Ph
Ph
Supplementary data associated with this article can be found, in
+
A
12a
OFe(III)
Ph
OFe(III)
References and notes
+
Ph
O
O
+
1. (a) Sharma, G. V. M.; Gopinath, T. Tetrahedron Lett. 2005, 46, 1307; (b) Ichege,
T.; Okano, Y.; Kanoh, N.; Nakata, M. J. Am. Chem. Soc. 2007, 129, 9862; (c) Ohrui,
H.; Emoto, S. Tetrahedron Lett. 1975, 3657; (d) Hudlicky, T.; Rinner, U.; Finn, K.
J.; Ghiviriga, I. J. Org. Chem. 2005, 70, 3490; (e) Jong-Dae Lee, J.-D.; Ueno, M.;
Miyajima, Y.; Nakamura, H. Org. Lett. 2007, 9, 323.
Ph
B
C
2. (a) Greene, T. W.; Wuts, P. G. M. Protecting Groups in Organic Synthesis, 2nd ed.;
John Wiley
& Sons: New York, 1991; pp 188–195; (b) Larock, R. C.
(III)FeO
Ph
Comprehensive Organic Transformations, 2nd ed.; Wiley-VCH: New York, 1999.
3. Rao, A. S.; Paknikar, S. K.; Kirtane, J. G. Tetrahedron 1983, 39, 2323.
4. Torok, D. S.; Figueroa, J. J.; Scott, W. J. J. Org. Chem. 1993, 58, 7274.
5. Bogert, M. T.; Roblin Jr, R. O. J. Am. Chem. Soc. 1933, 55, 3741.
6. Vyvyan, J. R.; Meyer, J. A.; Meyer, K. D. J. Org. Chem. 2003, 68, 9144.
7. Hanzlik, R. P.; Leinwetter, M. J. Org. Chem. 1978, 43, 438.
8. Firouzabadi, H.; Iranpoor, N.; Shaterian, H. R. Bull. Chem. Soc. Jpn. 2002, 75,
2195.
O
H
+
O
O
O
O
Ph
Ph
Ph
Ph
O
Ph
12b/
D
12b//
O
9. Masaki, Y.; Miura, T.; Ochiai, M. Chem. Lett. 1993, 17.
10. Procopio, A.; Dalpozzo, R.; De Nino, A.; Maiuolo, L.; Nardi, M.; Russo, B. Adv.
Synth. Catal. 2005, 347, 1447.
H
(III)Fe
FeCl3
O
H
+
O
O
O
O
11. Lee, S. H.; Lee, J. C.; Kim, N. S. Bull. Korean Chem. Soc. 2005, 26, 221.
12. Kazemi, F.; Kiasat, A. R.; Ebrahimi, S. Synth. Commun. 2005, 35, 1441.
13. Zatorski, L. W.; Wierzchowski, P. T. Catal. Lett. 1991, 10, 211.
14. Habibi, M. H.; Tangestaninejad, S.; Mirkhani, V.; Yadollahi, B. Catal. Lett. 2001,
75, 205.
15. Moghadam, M.; Tangestaninejad, S.; Mirkhani, V.; Shaibani, R. Tetrahedron
2004, 60, 6105.
16. Mohammadpoor-Baltork, I.; Khosropour, A. R.; Aliyan, H. Synth. Commun. 2001,
31, 3411.
O
MeO
H
O
MeO
H
E
17a
O
H
O
O
H
O
O
MeO
17. Iranpoor, N.; Adibi, H. Bull. Chem. Soc. Jpn. 2000, 73, 675.
18. Iranpoor, N.; Kazemi, F. Synth. Commun. 1998, 28, 3189.
19. Nagata, T.; Takai, T.; Yamada, T.; Imagawa, K.; Mukaiyama, T. Bull. Chem. Soc.
Jpn. 1994, 67, 2614.
17b
Scheme 3.
20. Iranpoor, N.; Zeynizadeh, B. J. Chem. Res. (S) 1998, 466.
21. Bucsi, I.; Meleg, A.; Molnar, A.; Bartok, M. J. Mol. Catal. A: Chem. 2001, 168, 47.
22. Zhu, Z.; Espenson, J. H. Organometallics 1997, 16, 3658.
23. Li, G.; Wang, B.; Wang, J.; Ding, Y.; Yan, L.; Suo, J. J. Mol. Catal. A: Chem. 2005,
236, 72.
24. Uneyama, K.; Isimura, A.; Fujii, K.; Torii, S. Tetrahedron Lett. 1983, 24, 2857.
25. (a) Altman, R. A.; Shafir, A.; Choi, A.; Lichtor, P. A.; Buchwald, S. L. J. Org. Chem.
2008, 73, 284; (b) Memarian, H. R.; Nikpour, F. Monatsh. Chem. 2002, 133, 1045;
(c) Banwell, M. G.; Coster, M. J.; Karunaratne, O. P.; Smith, J. A. J. Chem. Soc.,
Perkin Trans. 1 2002, 1622.
requires relatively little nucleophilic assistance or solvation from
acetone and is inter-convertible through the common intermediate
D. As a result, the epoxide 12a gave acetonide 12b as a mixture of
two isomers 12b0 and 12b00. In contrast, opening of epoxide 17a
probably requires much more assistance from the acetone carbonyl
due to the reduced stability of the non-benzylic carbonium ion E,
and thus acetonide formation is completely stereospecific leading
to 17b as the sole product. There may be other factors which con-
trol the approach of the acetone molecule to furnish 17b exclu-
sively. Sensitive functional groups such as chloride, methyl and
benzyl ethers, esters and hydroxyl remained unaffected under
the reaction conditions.
26. Typical procedure: To a well-stirred solution of 1a (150 mg, 1.0 mmol) in
acetone (10 mL), anhydrous FeCl3 (8 mg, 0.05 mmol) was added at room
temperature. After completion of the reaction (monitored by TLC) it was
quenched with saturated aqueous sodium bicarbonate solution, and the
volatiles were removed under reduced pressure. The residue obtained was
extracted with ether (2 ꢂ 50 mL). The combined ether extract was washed
successively with water (20 mL), brine (20 mL) and finally dried (Na2SO4). The
solvent was removed under reduced pressure and the residue obtained was
purified by column chromatography over silica gel (5% ethyl acetate in
petroleum ether) to obtain pure acetonide 1b (170 mg, 82%) as a crystalline
In conclusion, we have developed a mild and efficient method
for the conversion of epoxides to acetonides using cheap and com-
mercially available Fe(III) chloride as the catalyst. This reaction
worked smoothly for a wide range of epoxides.
solid, mp 65–67 °C. IR (neat): 2977, 1602, 1456, 1255 cmꢁ1 1H NMR (300 MHz,
;
CDCl3): d 1.41 (s, 3H), 1.47 (s, 3H), 3.88–3.97 (m, 2H), 4.07 (dd, J = 5.4, 9.5 Hz,
1H), 4.17 (dd, J = 6.6, 8.4 Hz, 1H), 4.45–4.52 (m, 1H), 6.91–6.99 (m, 3H), 7.29
(appeared as a triplet, J = 8.2 Hz, 2H); 13C NMR (75 MHz, CDCl3): d 25.5, 26.9,
67.0, 68.8, 74.1, 109.8, 114.6 (2C), 121.2, 129.6 (2C), 158.7; HRMS: calcd for
Acknowledgements
C
12H16O3Na 231.0997 [M+Na]+, found 231.0995.
27. Jana, S.; Guin, C.; Roy, S. C. Ind. J. Chem. 2007, 46B, 1648.
We sincerely thank DST, New Delhi for financial support. S.S.
and S.K.M. thank CSIR, New Delhi for research fellowships.
28. Dang, H. S.; Roberts, B. P.; Tocher, D. A. J. Chem. Soc., Perkin Trans. 1 2001,
2452.