Table 1. Reaction Results from Scheme 1
compd
A
B
(A, B)
R
EWG
(yield, %)
(yield, %)
ee (%)
5, 14
Bn (1a)
SO2t-butyl (4a)
SO2Ph (4b)
COOEt (4c)
SO2t-butyl (4a)
SO2Ph (4b)
84
79
77
86
85
50
82
75
85
70
90
73
91
86
67
63
69
N/A
99a
95b
96a
95b
97a
95a
96a
99a
N/A
6, 15
Bn (1a)
7, 16
Bn (1a)
8, 17
n-butyl (1b)
n-butyl (1b)
n-butyl (1b)
t-butyl (1c)
t-butyl (1c)
t-butyl (1c)
9, 18
10, 19
11, 20
12, 21
13. 22
COOEt (4c)
SO2t-butyl (4a)
SO2Ph (4b)
COOEt (4c)
a ee values determined using chiral HPLC. b ee values determined through 1H NMR analysis of crude reaction mixture of γ-hydroxy alcohols with
(S)-Mosher acid chloride.
Recent reports on the organocatalytic, asymmetric R-se-
lenenylation of aldehydes in high yields (>85%) and high
Scheme 1
.
Synthesis of γ-Hydroxy-R,ꢀ-unsaturated Sulfones
and Esters from R-Selenyl Aldehydes11
enantiomeric excess (>95%)8 gave us an entry point to
control absolute stereochemistry in our γ-hydroxy-R,ꢀ-
unsaturated systems. Such R-selenylated aldehydes could
easily undergo an aldol-type reaction with an electron-
withdrawing group (EWG)-stabilized carbanion to give a
diastereomeric pair of γ-selenyl-ꢀ-hydroxy sulfones or esters.
Oxidation of the selenide and treatment with mild base could
give a ꢀ,γ-epoxide which, upon further treatment with base
could rearrange into the desired enantiomerically enriched
γ-hydroxy-R,ꢀ-unsaturated ester or sulfone with the overall
inversion of stereochemistry (Scheme 1, Table 1).
In order to examine the scope of this reaction, we chose three
aldehydes (3-phenylpropanal, hexanal, and 3,3-dimethylbutanal)
and three EWG-stabilized methyl groups (tert-butyl methyl
sulfone, phenyl methyl sulfone, and ethyl acetate). Using the
methodology of Tiecco and Marini8b to make R-selenyl
aldehydes 3a-c, we were able to react the crude R-selenyl
aldehyde9 with lithiated EWG-stabilized methyl groups 4a-c
to give diastereomeric compounds 5-13 (Scheme 1, A) in
55-86% yields. γ-Selenyl-ꢀ-hydroxy sulfones and esters 5-13
underwent oxidation and spontaneous cyclization with m-CPBA
and K2CO3 to give the transient ꢀ,γ-epoxide which immediately
rearranged in situ to yield exclusively the γ-hydroxy-(E)-R,ꢀ-
unsaturated sulfone or ester 14-22 (Scheme 1, B) in 63-90%
yields and excellent ee’s (g95%). The (E)-geometry of the new
carbon-carbon double bond in products 14-22 was confirmed
by H NMR spectoscopy (JR,ꢀ ) 14-16 Hz). R-Selenyl
1
aldehyde 3c derived from 3,3-dimethylbutanal underwent reac-
tion sequence A (Scheme 1) in high yield with all three EWG-
stabilized carbanions (4a-c), but γ-selenyl-ꢀ-hydroxy ester 13
derived from reaction with ethyl aceate (4c) decomposed under
the reaction conditions used in reaction sequence B (Scheme
1). Also, substituted EWG-stabilized methyl groups such as
propionates were explored, but no substantial selectivity in E/Z
double bond formation was seen.
Our success using R-selenenylated aldehydes led us to
investigate other leaving groups alpha to the aldehyde and
whether a one-pot 3-step procedure might be possible
(Scheme 2). Given the precedent for the enantioselective
organocatalytic R-chlorination of aldehydes10 we decided to
explore the feasibility of such a system in the reaction
(7) (a) Ogura, K.; Shibuya, N.; Iida, H. Tetrahedron Lett. 1981, 22,
1519–1522. (b) Pyne, S. G.; Spellmeyer, D. C.; Chen, S.; Fuchs, P. L. J. Am.
Chem. Soc. 1982, 104, 5728–5740. (c) Fuchs, P. L.; Hutchinson, D. K.
J. Am. Chem. Soc. 1985, 107, 6137–6138. (d) Ryu, I.; Kusumoto, N.; Ogawa,
A.; Kambe, N.; Sonoda, N. Organometallics 1989, 8, 2279–2281. (e)
Dominguez, E.; Carretero, J. C. Tetrahedron 1990, 46, 7197–7206. (f)
Burgess, K.; Cassidy, J.; Henderson, I. J. Org. Chem. 1991, 56, 2050–
2058. (g) Trost, B. M.; Grese, T. A. J. Org. Chem. 1991, 56, 3189–3192.
(h) Wnuk, S. F.; Dalley, N. K.; Robins, M. Can. J. Chem. 1991, 69, 2104–
2111. (i) Barton, D. L.; Gero, S. D.; Quiclet-Sire, B.; Samadi, M.
Tetrahedron: Asymmetry 1994, 5, 2123–2126. (j) Zoller, T.; Uguen, D. Eur.
J. Org. Chem. 1999, 154, 5–1550. (k) de la Rosa, V. G.; Ordonez, M.;
Llera, J. M. Tetrahedron: Asymmetry 2000, 2000, 2991–3001. (l) Marcus,
J.; Van Meurs, P. J.; Van den Nieuwendijk, M. C. H.; Porchet, M.; Brussee,
J.; Van der Gen, A. Tetrahedron 2000, 56, 2491–2495. (m) Pedersen, T. M.;
Hansen, E. L.; Kane, J.; Rein, T.; Helquist, P.; Nourby, P. O.; Tanner, D.
J. Am. Chem. Soc. 2001, 123, 9738–9742. (n) Rodriguez, S.; Vidal, A.;
Monroig, J. J.; Gonzalez, F. V. Tetrahedron Lett. 2004, 45, 5359–5361.
(8) (a) Sunden, H.; Rios, R.; Cordova, A. Tetrahedron Lett. 2007, 48,
7865–7869. (b) Tiecco, M.; Carlone, A.; Sternativo, S.; Marini, F.; Bartoli,
G.; Melchiorre, P. Angew. Chem., Int. Ed. 2007, 46, 6882–6885.
(10) (a) Brochu, M. P.; Brown, S. P.; MacMillan, D. W. C J. Am. Chem.
Soc. 2004, 126. (b) Halland, N.; Braunton, A.; Bachmann, S.; Marigo, M.;
Jorgensen, K. A. J. Am. Chem. Soc. 2004, 126, 4790–4791.
(9) Column chromatography of the R-selenyl aldehydes, even using
Florisil, led to erosion of enantiomeric purity.
4686
Org. Lett., Vol. 10, No. 20, 2008