C O M M U N I C A T I O N S
Chart 1. Olefin-Substituted Allylic Alcohols with Olefin Substitution
Supporting Information Available: Synthetic details and char-
acterization data for products. This material is available free of charge
Patterns that Inhibited Reactions
References
(1) For a review, see: Johannsen, M.; Jørgensen, K. A. Chem. ReV. 1998,
98, 1689.
(2) For recent examples, see: (a) Leitner, A.; Shekhar, S.; Pouy, M. J.;
Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 15506. (b) Bartels, B.;
Helmchen, G. Chem. Commun. 1999, 741. (c) Bartels, B.; Garcia-Yebra,
C.; Rominger, F.; Helmchen, G. Eur. J. Inorg. Chem. 2002, 2569. (d)
Takeuchi, R. Polyhedron 2000, 19, 557. (e) Leitner, A.; Shu, C. T.;
Hartwig, J. F. Org. Lett. 2005, 7, 1093.
Scheme 3. Possible Mechanism for the Homoallylic Group
Transfer and Cyclization. Likely Oligomerization of Terminal Oxo
Complexes and Other Ligands Are Not Shown for Simplicity
(3) For related phosphorimidate chemistry, see: (a) Chen, B.; Mapp, A. K.
J. Am. Chem. Soc. 2005, 127, 6712.
(4) (a) Shi, Y. H.; Ciszewski, J. T.; Odom, A. L. Organometallics 2001, 20,
3967. (b) Bexrud, J. A.; Beard, J. D.; Leitch, D. C.; Schafer, L. L. Org.
Lett. 2005, 7, 1959.
(5) In the case of benzhydrylamine, some side products were apparent in small
quantities due to radical rearrangement, for example, HN(Bzh)2. Attempted
reactions with benzylamine were unsuccessful under these conditions.
(6) All the combinations were attempted with the alcohols listed with all three
amines. “Missing” reactions in Table 1 did not result in product by GC
in initial screens with this mediator.
(7) For entries 7 and 8, there is a small amount (<10%) of the alternative
regioisomers present. See the Supporting Information for more details.
(8) Anderson, R. J.; Ashwell, S.; Garnet, I.; Golding, B. T. Perkin Trans. 1
2000, 4488.
(9) (a) Chan, D. M.-T.; Fultz, W. C.; Nugent, W. A.; Roe, D. C.; Tulip, T.
H. J. Am. Chem. Soc. 1985, 107, 251. (b) Chan, D. M.-T.; Nugent, W. A.
Inorg. Chem. 1985, 24, 1422. For a more mechanistic discussion on related
examples, see: (c) Belgacem, J.; Kress, J.; Osborn, J. A. J. Am. Chem.
Soc. 1992, 114, 1501. (d) Belgacem, J.; Kress, J.; Osborn, J. A. J. Mol.
Catal. 1994, 86, 267.
the Ti-C bond in the bicyclic intermediate (Scheme 1), a partial
negative charge will be present at the 2-carbon of the allyl. Addition
of a phenyl group should resonance stabilize this charge.
An attempted reaction with homoallylic alcohol and cyclohexyl-
amine shows that this substrate also transfers the alkyl group!15
Interestingly, the olefinic amine is not the final product. A
cyclization occurs with the apparent insertion of the olefin into the
methine hydrogen of the cyclohexyl group. The final product is
the spiro compound shown in Table 1.
The 1-aza-spiro[5.5]undecane core is found in several natural
products, such as histrionicotoxin.16 The parent spiro compound
has been synthesized previously in six steps in ∼6% overall yield.17
For a deuterium labeling experiment, the homoallylic alcohol
with two deuteriums on the hydroxyl-bearing carbon was synthe-
sized.18 Contrary to allyl, the carbon bearing the label ends the
reaction attached to nitrogen in the spiro product (Table 1).
The labeling experiment suggests a new mechanism for the
nitrogen alkylation step. The C-N bond forming step may involve
migration of the alkyl from the alkoxide to an imido or amido ligand
(Scheme 3). The alkyl transfer step is unusual but reminiscent of
the four-center mechanism found in reaction of zirconium alkyls
with Br2.19 In addition, the mechanism proposed here is similar to
that observed in Re oxo hydroxides by Mayer and co-workers,
where hydrogen transfer occurs in a unimolecular migration.20 The
exact mechanism is still under investigation.
(10) For reviews, see: (a) Grasselli, R. K. Top. Catal. 2002, 21, 79. (b) Hanna,
T. A. Coord. Chem. ReV. 2004, 248, 429.
(11) (a) Chabardes, P.; Kuntz, E.; Varagnat, J. Tetrahedron 1977, 33, 1775.
(b) Trost, B. M.; Jonasson, C. Angew. Chem., Int. Ed. 2003, 42, 2063. (c)
Trost, B. M.; Jonasson, C.; Wuchrer, M. J. Am. Chem. Soc. 2001, 123,
12736. (d) Trost, B. M.; Oi, S. J. Am. Chem. Soc. 2001, 123, 1230. (e)
Matsubara, S.; Okazoe, T.; Oshima, K.; Takai, K.; Nozaki, H. Bull. Chem.
Soc. Jpn. 1985, 58, 844. (f) Hosogai, T.; Fujita, Y.; Ninagawa, Y.; Nishida,
T. Chem. Lett. 1982, 357. For a recent related reaction, see also: (g)
Sherry, B. D.; Radosevich, A. T.; Toste, F. D. J. Am. Chem. Soc. 2003,
125, 6076. (h) Bellemin-Laponnaz, S.; Gisie, H.; Le Ny, J. P.; Osborn, J.
A. Angew. Chem., Int. Ed. Engl. 1997, 36, 976. (i) Bellemin-Laponnaz,
S.; Le Ny, J. P.; Osborn, J. A. Tetrahedron Lett. 2000, 41, 1549. (j) Morrill,
C.; Grubbs, R. H. J. Am. Chem. Soc. 2005, 127, 2842.
(12) (a) Parshall, G. W.; Ittel, S. D. Homogeneous Catalysis: The Applications
and Chemistry of Catalysis by Soluble Transition Metal Complexes; John
Wiley & Sons: New York, 1992. (b) Parshall, G. W.; Nugent, W. A.
Chemtech 1988, 376.
(13) For related carbene rearrangements, see: (a) Casey, C. P.; Shusterman,
A. J. Organometallics 1985, 4, 736. (b) Sathe, K. M.; Nandi, M.; Amin,
S. K.; Puranik, V. G.; Sarkar, A. Organometallics 1996, 15, 2881. (c)
Trost, B. M.; Dyker, G.; Kulawiec, R. J. J. Am. Chem. Soc. 1990, 112,
7809. (d) Herndon, J. W. Curr. Org. Chem. 2003, 7, 329. (e) Herndon, J.
W.; McMullen, L. A. J. Am. Chem. Soc. 1989, 111, 6854.
(14) Grubbs, R. H., Ed. Handbook of Metathesis; Wiley-VCH: Weinheim,
Germany, 2003.
(15) A similar reaction between H2NCHPh2 and homoallylic alcohol generated
a product with the expected mass for homoallylic transfer. However, the
reaction was not as clean (ref 5). Aniline was unreactive.
(16) For recent examples, see: (a) Williams, G. M.; Roughley, S. D.; Davies,
J. E.; Holmes, A. B.; Adams, J. P. J. Am. Chem. Soc. 1999, 121, 4900.
(b) Stork, G.; Zhao, K. J. Am. Chem. Soc. 1990, 112, 5876. (c) Venit, J.
J.; DiPierro, M.; Magnus, P. J. Org. Chem. 1989, 54, 4298. (d) Evans, D.
A.; Thomas, E. W.; Cherpeck, R. E. J. Am. Chem. Soc. 1982, 104, 3695.
(e) Tufariello, J. J.; Trybulski, E. J. J. Org. Chem. 1974, 39, 3378. (f)
Carey, S. C.; Aratani, M.; Kishi, Y. Tetrahedron Lett. 1985, 26, 5887.
(17) (a) Mimura, M.; Hayashida, M.; Nomiyama, K.; Ikegami, S.; Iida, Y.;
Tamura, M.; Hiyama, Y.; Ohishi, Y. Chem. Pharm. Bull. 1993, 41, 1971.
(b) See also: Hodjat, H.; Lattes, A.; Laval, J. P.; Moulines, J.; Perie, J.
J. J. Heterocycl. Chem. 1972, 9, 1081.
The chemistry illustrated provides a simple, effective route to
selectively produce secondary allylic amines in a regioselective
manner. The starting materials are readily available alkenyl alcohols,
allylic or homoallylic. Currently, we favor the [2 + 2]-pathway
(Scheme 1) for this titanium system due to 2-methyl inhibition in
allyl transfer.21 While other methodologies exist for amine allyla-
tion,2 the flexibility of these mechanisms potentially opens new
avenues useful for organic synthesis.
(18) Negishi, E.; Boardman, L. D.; Sawada, H.; Bagheri, V.; Stoll, A. T.; Tour,
J. M.; Rand, C. L. J. Am. Chem. Soc. 1988, 110, 5383.
(19) Labinger, J. A.; Hart, D. W.; Seibert, W. E., III; Schwartz, J. J. Am. Chem.
Soc. 1975, 97, 3851.
(20) Erikson, T. K. G.; Mayer, J. M. Angew. Chem., Int. Ed. Engl. 1988, 27,
1527.
Acknowledgment. The research in our group is supported
financially by the National Science Foundation, U.S. Department
of Energy-Defense Programs, and Michigan State University.
A.L.O. is an Alfred P. Sloan Fellow. A.L.O. would like to thank
Jim Mayer and Laurel Schafer for helpful discussions.
(21) Interestingly, current evidence regarding the rearrangement of coordinated
ethers on zirconium imido compounds suggests they utilize the six-
membered ring transition state. Lalic, G.; Blum, S.; Bergman, R. G. J.
Am. Chem. Soc. 2005, 127, 16790.
JA0628811
9
J. AM. CHEM. SOC. VOL. 128, NO. 29, 2006 9345