Communications
conformational changes (compounds 3 and 4) and 2) give rise
to unprecedented bonding modes for the guest, including
À
commonly used anions (compound 5). The fact that the PF6
ion was found to be less coordinatively “innocent” than
previously assumed may have broader implications in the
field of coordination chemistry.
Received: April 21, 2008
Published online: July 25, 2008
Keywords: anion effect · bridging ligands · coordination modes ·
.
host–guest systems · structure elucidation
Figure 4. ORTEP plot of centrosymmetric complex 5 in 5·2CH2Cl2.
Phenyl groups are omitted for clarity. Selected distances [] and angles
[8]: Ag1–P1 2.419(1), Ag1–P2 2.413(1), Ag1–F1 2.639(3), Ag1–F2
2.638(1); P1-Ag1-P2’ 140.62(4), F1-Ag1-F1’ 62.18(9).
7894; d) R. Frantz, C. S. Grange, N. K. Al-Rasbi, M. D. Ward, J.
process is likely to take place in solution, resulting in the
equivalence of the fluorine atoms on the NMR timescale.
A comparison between the unprecedented metal–anion
interaction in 5 and the related situations in 3 and 4 very
clearly illustrates the mutual influence of the metal cation and
the anion on such host–guest features. The aryl groups
synergistically cooperate in 5 to form hemispherical cavities
situated on opposite sides of the Ag2P4 moiety (Scheme 3).
The steric complementarity and resulting affinity between
the anion and the cationic complex is emphasized in the
space-filling model shown in Figure 5.
We have shown herein that the synergy between axial
planar groups and phenyl groups in the coordination com-
plexes of functional ligands can induce the formation of
cavities with dimensions of supramolecular relevance, which
can 1) be modified by the size of the anion, resulting in major
[3] For recent examples see e.g.: a) G. Ciancaleoni, G. Bellachioma,
G. Cardaci, G. Ricci, R. Ruzziconi, D. Zuccaccia, A. Macchioni, J.
Bellachioma, G. Cardaci, G. Ciancaleoni, C. Zuccaccia, E. Clot,
d) D. Nama, P. S. Pregosin, A. Albinati, S. Rizzato, Organo-
[4] X-ray diffraction data: 3·3CH2Cl2: C81H70B2Cl8F8O4P4Pd2, T=
¯
173 K, M = 1901.27, triclinic P1, a = 13.7361(4), b = 16.0504(4),
c = 20.0595(4) , a = 103.023(1), b = 106.833(1), g = 98.008(1)8,
V= 4023.69(17) 3, Z = 2, 1calcd = 1.569 gcmÀ3
,
m(MoKa) =
8.61 mmÀ1, F(000) = 1916, 2qmax = 538, R1 = 0.0477, wR2 = 0.1252,
R(int) = 0.0544 parameters = 1018, observed reflections = 12085
(16670 measured); 4·2CH2Cl2·C5H12: C85H78Cl8F12O4P6Pd2, T=
¯
173 K, M = 2073.69, triclinic P1, a = 11.3740(13), b =
14.1500(17), c = 15.905(2) , a = 114.812(5), b = 99.373(7), g =
97.914(8)8, V= 2231.0(5) 3, Z = 1, 1calcd=1.543 gcmÀ3
,
m-
(MoKa) = 8.24 mmÀ1
, F(000) = 1046, 2qmax = 528, R1 = 0.0755,
Scheme 3.
wR2 = 0.1444, R(int) = 0.0879 parameters = 525, observed reflec-
tions = 3839 (8475 measured); 5·2CH2Cl2: C80H68Ag2Cl4F12O4P6,
T= 173 K, M = 1864.70, triclinic P21/c, a = 14.1605(5), b =
13.6956(5), c = 23.8959(8) , b = 123.245(2), V= 3875.8(2) 3,
Z = 2, 1calcd = 1.598 gcmÀ3, m(MoKa) = 8.46 mmÀ1, F(000) = 1880,
2qmax = 558, R1 = 0.0500, wR2 = 0.1003, R(int) = 0.0674 parame-
ters = 523, observed reflections = 4663 (8856 measured).
CCDC 685553 (3), 685554 (4), and 685555 (5) contain the
supplementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge Crystallo-
[5] CCDC database, November 2006 update.
[6] For a recent example see: N. Muresan, K. Chlopek, T. Weyher-
Figure 5. Orthogonal views of space-filling diagrams of the molecular
structure of 5 in 5·2CH2Cl2. Color code: aryl groups: gray, PF6: white.
[7] a) L. Carlucci, G. Ciani, D. M. Proserpio, A. Sironi, Inorg. Chem.
6858
ꢀ 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2008, 47, 6856 –6859