Organic Letters
Letter
Mar. Drugs 2017, 15, 230. (b) Furstner, A. Chemistry and Biology of
Roseophilin and the Prodigiosin Alkaloids: A Survey of the Last 2500
Years. Angew. Chem., Int. Ed. 2003, 42, 3582. (c) Hayakawa, Y.;
Kawakami, K.; Seto, H.; Furihata, K. Structure of a New Antibiotic,
Roseophilin. Tetrahedron Lett. 1992, 33, 2701.
Parmee, E. R. The Importance of Synthetic Chemistry in the
Pharmaceutical Industry. Science 2019, 363, eaat0805. (c) Uehling, M.
R.; King, R. P.; Krska, S. W.; Cernak, T.; Buchwald, S. L.
Pharmaceutical Diversification via Palladium Oxidative Addition
complexes. Science 2019, 363, 405.
(6) Ayala, C. E.; Dange, N. S.; Fronczek, F. R.; Kartika, R. Bronsted
Acid Catalyzed Alpha’-Funztionalization of Silylenol Ethers with
Indole. Angew. Chem., Int. Ed. 2015, 54, 4641.
(7) (a) Malone, J. A.; Van Houten, J. P.; Ganiu, M. O.; Nepal, B.;
Kartika, R. Brønsted Acid Catalyzed Synthesis of Functionalized 1,4-
and 1,6-Dicarbonyl Monosilyl Enol Ethers under Operationally
Practical Conditions. J. Org. Chem. 2017, 82, 10659. (b) Stepherson,
J. R.; Fronczek, F. R.; Kartika, R. An Expedient Synthesis of
Functionalized 1,4-Diketone-derived Compounds via Silyloxyallyl
Cation Intermediates. Chem. Commun. 2016, 52, 2300.
(8) (a) Paal, C. Ueber die Derivate des Acetophenonacetessigesters
und des Acetonylacetessigesters. Ber. Dtsch. Chem. Ges. 1884, 17,
2756. (b) Knorr, L. Synthese von Furfuranderivaten aus dem
(3) (a) Brayton, D. F.; Beaumont, P. R.; Fukushima, E. Y.; Sartain,
H. T.; Morales-Morales, D.; Jensen, C. M. Synthesis, Characterization,
and Dehydrogenation Activity of an Iridium Arsenic Based Pincer
Catalyst. Organometallics 2014, 33, 5198. (b) Brayton, D. F.; Jensen,
C. M. Solvent Free Selective Dehydrogenation of Indolic and
Carbazolic Molecules with an Iridium Pincer Catalyst. Chem.
Commun. 2014, 50, 5987. (c) Andreev, I. A.; Ratmanova, N. K.;
Novoselov, A. M.; Belov, D. S.; Seregina, I. F.; Kurkin, A. V. Synthesis
of 4,5,6,7-Tetrahydro-1H-indole Derivatives Through Successive
Sonogashira Coupling/Pd-Mediated 5-endo-dig Cyclization. Chem. -
Eur. J. 2016, 22, 7262. (d) Andreev, I. A.; Belov, D. S.; Kurkin, A. V.;
Yurovskaya, M. A. Oxidative Dearomatization of 4,5,6,7-Tetrahydro-
1H-indoles Obtained by Metal- and Solvent-Free Thermal 5-endo-dig
Cyclization: The Route to Erythrina and Lycorine Alkaloids. Eur. J.
Org. Chem. 2013, 2013, 649. (e) Xue, S. W.; Li, Y.; Wang, L. H.; Liu,
J. M.; Qing, X. S.; Wang, C. D. Four-Component Reaction of
Substituted Nitrostyrenes, Cyclohexanones, Activated Methylene
Compounds, and Ammonium Acetate: Efficient Strategy for
Construction of Tetrahydroindole Skeletons. Synlett 2016, 27, 1083.
(f) Mamedov, V. A.; Hafizova, E. A.; Zamaletdinova, A. I.; Rizvanov,
I. K.; Mirgorodskaya, A. B.; Zakharova, L. Y.; Latypov, S. K.;
Sinyashin, O. G. Sequential Substitution/ring cleavage/addition
Reaction of 1-(Cyclohex-1-enyl)-piperidine and -Pyrrolidine with
Chloropyruvates for the Efficient Synthesis of Substituted 4,5,6,7-
Tetrahydro-1H-indole Derivatives. Tetrahedron 2015, 71, 9143.
(g) To, Q. H.; Lee, Y. R.; Kim, S. H. One-step Synthesis of
Tetrahydroindoles by Ceric(IV) Ammonium Nitrate-Promoted
Oxidative Cycloaddition of Enaminones and Vinyl Ethers. Tetrahe-
dron 2014, 70, 8108. (h) Shi, Q. Q.; Fu, L. P.; Shi, Y.; Ding, H. Q.;
Luo, J. H.; Jiang, B.; Tu, S. J. Three-component Synthesis of Poly-
Substituted Tetrahydroindoles Through p-TsOH Promoted Alkox-
ylation. Tetrahedron Lett. 2013, 54, 3176. (i) Noland, W. E.;
Lanzatella, N. P.; Sizova, E. P.; Venkatraman, L.; Afanasyev, O. V.
In Situ Vinylpyrrole Synthesis. Diels-Alder Reactions with Maleimides
to Give Tetrahydroindoles. J. Heterocycl. Chem. 2009, 46, 503.
(j) Peters, B. K.; Liu, J. G.; Margarita, C.; Rabten, W.; Kerdphon, S.;
Orebom, A.; Morsch, T.; Andersson, P. G. Enantio- and
Regioselective Ir-Catalyzed Hydrogenation of Di- and Trisubstituted
Cycloalkenes. J. Am. Chem. Soc. 2016, 138, 11930. (k) Zhang, J. W.;
Liu, X. W.; Gu, Q.; Shi, X. X.; You, S. L. Enantioselective Synthesis of
4,5,6,7-Tetrahydroindoles via Olefin Cross-Metathesis/Intramolecular
Friedel-Crafts Alkylation Reaction of Pyrroles. Org. Chem. Front.
2015, 2, 476.
̈
Diacetbernsteinsaureester. Ber. Dtsch. Chem. Ges. 1884, 17, 2863.
(c) Amarnath, V.; Anthony, D. C.; Amarnath, K.; Valentine, W. M.;
Wetterau, L. A.; Graham, D. G. Intermediates in the Paal-Knorr
Synthesis of Pyrroles. J. Org. Chem. 1991, 56, 6924.
(10) CCDC 1894940−1894943 contain the supplementary
crystallographic data for compounds 7j, 9a, 13b, and 13g,
respectively.
(11) Liu, C.; Oblak, E. Z.; Vander Wal, M. N.; Dilger, A. K.;
Almstead, D. K.; MacMillan, D. W. C. Oxy-Allyl Cation Catalysis: An
Enantioselective Electrophilic Activation Mode. J. Am. Chem. Soc.
2016, 138, 2134.
(4) (a) Mou, X. Q.; Xu, Z. L.; Wang, S. H.; Zhu, D. Y.; Wang, J.;
Bao, W.; Zhou, S. J.; Yang, C.; Zhang, D. An Au(I)-catalyzed
Rearrangement/cyclization Cascade Toward the Synthesis of 2-
Substituted 1,4,5,6-Tetrahydrocyclopenta[b]pyrrole. Chem. Commun.
2015, 51, 12064. (b) Yoshida, M.; Maeyama, Y.; Al-Amin, M.;
Shishido, K. Synthesis of Substituted 1,4,5,6-Tetrahydrocyclopenta-
[b]pyrroles by Platinum-Catalyzed Cascade Cyclization/Ring Ex-
pansion of 2-Alkynyl-1-azaspiro[2.3]hexanes. J. Org. Chem. 2011, 76,
5813. (c) Rousseau, B.; Nydegger, F.; Gossauer, A.;
BennuaSkalmowski, B.; Vorbruggen, H. An Improved Method for the
Preparation of N-Unsubstituted 1,4,5,6-Tetrahydrocyclopenta[b]pyrroles:
Synthesis of an Azaprostacyclin Analogue and its 7-Cyano Derivative;
Synthesis-Stuttgart, 1996. (d) Muller, A.; Maier, A.; Neumann, R.;
Maas, G. Alkoxycarbonylcarbene Transfer to Semicyclic Enaminones -
A Route to Cyclopenta[b]pyrrole and Indole Ring Systems. Eur. J.
Org. Chem. 1998, 1998, 1177.
(5) (a) Blakemore, D. C.; Castro, L.; Churcher, I.; Rees, D. C.;
Thomas, A. W.; Wilson, D. M.; Wood, A. Organic Synthesis Provides
Opportunities to Transform Drug Discovery. Nat. Chem. 2018, 10,
383. (b) Campos, K. R.; Coleman, P. J.; Alvarez, J. C.; Dreher, S. D.;
Garbaccio, R. M.; Terrett, N. K.; Tillyer, R. D.; Truppo, M. D.;
E
Org. Lett. XXXX, XXX, XXX−XXX