C O M M U N I C A T I O N S
Finally, we sought to test the amination reaction in more complex
systems (Scheme 3). In particular, we were attracted to N-glycosyl
carbazoles, due to the prevalence of this motif in a range of natural
products.4a We were pleased to find that 1v underwent smooth C-H
bond amination to form carbazole 2v in good yield. Despite the
sensitivity and the steric encumbrance at the N-glycosyl linkage,
the successful outcome demonstrates the potential for this C-H
bond amination process in more challenging situations.
References
(1) (a) Ullmann, F. Ber. 1903, 36, 2382. For reviews, see: (b) Kunz, K.; Scholz,
U.; Ganzer, D. Synlett. 2003, 15, 2428. (c) Ley, S. V.; Thomas, A. W.
Angew. Chem., Int. Ed. 2003, 42, 5400. (d) Ley, S. V.; Thomas, A. W.
Angew. Chem., Int. Ed. 2004, 43, 1043.
(2) For seminal reports, see: (a) Kosugi, M.; Kameyama, M.; Migita, T. Chem.
Lett. 1983, 927. (b) Guram, S.; Buchwald, S. L. J. Am. Chem. Soc. 1994,
116, 7901. (c) Paul, F.; Patt, J.; Hartwig, J. F. J. Am. Chem. Soc. 1994,
116, 5969. (d) Wolfe, J. P.; Wagaw, S.; Buchwald, S. L. J. Am. Chem.
Soc. 1996, 118, 7215 For reviews, see: (e) Jiang, L.; Buchwald, S. L. Metal-
Catalyzed Cross-Coupling Reactions, 2nd ed.; Wiley-VCH: Weinheim,
2004; Vol. 2, p 699. (f) Hartwig, J. F. In Handbook of Organopalladium
Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley-Interscience: New
York, 2002; p 1051. (g) Surry, D. S.; Buchwald, S. L. Angew. Chem., Int.
Ed. 2008, 47, 6338.
Scheme 3. Formation of N-Glycosyl Carbazoles
(3) For recent examples, see: (a) Liegault, Lee, D.; Huestis, M. P.; Stuart, D. R.;
Fagnou, K. J. Org. Chem. 2008, 73, 5022. (b) Kuwahara, A.; Nakano, K.;
Nozaki, K. J. Org. Chem. 2005, 70, 413. For review, see: (c) Knolker,
H.-J.; Reddy, K. R. Chem. ReV. 2002, 102, 4304.
(4) (a) Sa`nchez, C.; Me`ndez, C.; Salas, J. A. Nat. Prod. Rep. 2006, 23, 1007.
(b) Cheng, J.; Kamiya, K.; Kodama, I. CardioVasc. Drug ReV. 2001, 19,
152. For a recent example, see: (c) Blouin, N; Michaud, A.; Gendron, D.;
Wakim, D.; Blair, B.; Neagu-Plesu, R.; Belletete, M.; Durocher, G.; Tao,
Y.; Leclerc, M. J. Am. Chem. Soc. 2008, 130, 732.
We also found that if we changed the oxidation system to
I2-PhI(OAc)2,8e we were able to affect a tandem reaction wherein
1a is first iodinated in the para-position to the electron-donating
amino group, before undergoing C-H bond amination giving 2o.14
The product of this reaction can be further elaborated to 3 using a
Suzuki cross coupling reaction allowing a facile method for the
generation of highly functionalized carbazoles (Scheme 4).
(5) C-H amination via nitrenes: (a) Espino, C. G.; Fiori, K. W.; Kim, M.; Du
Bois, J. J. Am. Chem. Soc. 2004, 126, 15378, and references therein. (b)
Lebel, H.; Huard, K.; Lectard, S. J. Am. Chem. Soc. 2005, 127, 14198. (c)
Liang, C.; Robert-Peillard, F.; Fruit, C.; Mu¨ller, P.; Dodd, R. H.; Dauban,
P. Angew. Chem., Int. Ed. 2006, 45, 4641. (d) Stokes, B. J.; Dong, H.;
Leslie, B. E.; Pumphrey, A. L.; Driver, T. G. J. Am. Chem. Soc. 2007,
129, 7500. (e) Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. J. Am. Chem. Soc. 2006,
128, 9048. (f) Smitrovitch, J. H.; Davies, I. W Org. Lett. 2004, 6, 533. For
examples of allylic C-H aminations see: (g) Reed, S. A.; White, M. C.
J. Am. Chem. Soc. 2008, 130, 3316. (h) Fraunhoffer, K. J.; White, M. C.
J. Am. Chem. Soc. 2007, 129, 7274. (i) Liu, G.; Yin, G.; Wu, L. Angew.
Chem., Int. Ed. 2008, 47, 4733. For Cu-catalyzed aminations, see: (j)
Brasche, G.; Buchwald, S. L. Angew. Chem., Int. Ed. 2008, 47, 1932. (k)
Hamada, T.; Ye, X; Stahl, S. S. J. Am. Chem. Soc. 2008, 130, 833.
(6) (a) Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. J. Am. Chem. Soc. 2005,
127, 14560. (b) Li, B.-J.; Tian, S.-L.; Fang, F.; Shi, Z.-J. Angew. Chem.,
Int. Ed. 2007, 46, 1. (c) Inamoto, K.; Saito, T.; Katsuno, M.; Sakamoto,
T.; Hiroya, K. Org. Lett. 2007, 9, 2931. (d) Tsang, W. C. P.; Munday,
R. H.; Brasche, G.; Zheng, N.; Buchwald, S. L. J. Org. Chem. 2008, 73,
7603.
Scheme 4. Applications of Pd(II)-Catalyzed C-H Bond Amination
In summary, we have developed a new Pd(II)-catalyzed C-H
bond amination reaction to form carbazoles, an important motif
that is prevalent in a range of systems. The catalytic amination
process operates under extremely mild conditions, has a broad
substrate scope, and forms the carbazole products in good to
excellent yields. Carbazoles possessing complex molecular archi-
tecture can also be formed using this reaction, highlighting its
potential in natural product synthesis applications. Isolation of a
trinuclear cyclopalladation complex suggests that the mechanism
of the reaction proceeds through a Pd(II)/Pd(IV) manifold. More
detailed mechanistic investigations are ongoing, and these results
will be reported in due course. We are also investigating the
development of an intermolecular C-H bond amination process
using this concept.
(7) For a recent review on palladacycles see Dupont, J.; Consorti, C. S.; Spencer,
J. Chem. ReV. 2005, 105, 2527, and references therein.
(8) (a) For selected examples of reductive elimination of C-heteroatom bonds
from Pd(IV), see: (a) Furuya, T.; Ritter, T. J. Am. Chem. Soc. 2008, 130,
10060. (b) Fu, Y.; Li, Z.; Liang, S.; Guo, Q.-X.; Liu, L. Organometallics
2008, 27, 3736. (c) Whitfield, S. R.; Sanford, M. S. J. Am. Chem. Soc.
2007, 129, 15142. (d) Dick, A. R.; Remy, M. S.; Kampf, J. W.; Sanford,
M. S. Organometallics 2007, 27, 1365. (e) Giri, R.; Chen, X.; Yu, J.-Q.
Angew. Chem., Int. Ed. 2005, 44, 2112. For reductive elimination from
Pt(IV), see: (f) Pawlikowski, A. V.; Getty, A. D.; Goldberg, K. I. J. Am.
Chem. Soc. 2007, 129, 10382.
(9) (a) See Supporting Information for more details. (b) No reaction is observed
in the absence of Pd(OAc)2. (c) AcOH improved yield of 2.
(10) For electrophilic mechanism examples, see: (a) Parshall, G. W. Acc. Chem.
Res. 1970, 3, 139. (b) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res.
2001, 34, 633. For C-H abstraction mechanism examples, see: (c) Lafrance,
M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. J. Am. Chem. Soc. 2006, 128,
8754. (d) Garcia-Cuadrado, D.; Braga, A. A. C.; Maseras, F.; Echavarren,
A. M. J. Am. Chem. Soc. 2006, 128, 1066. (e) Wang, X.; Lane, B. S.;
Sames, D. J. Am. Chem. Soc. 2005, 127, 4996.
Acknowledgment. We gratefully acknowledge AstraZeneca and
EPSRC for studentship (to J.J.H.), the EPSRC (C.C.C.J.), the
Spanish Government and Marie Curie Foundation for fellowship
(to M.G.), the Royal Society for University Research Fellowship
(to M.J.G.), Philip & Patricia Brown for Next Generation Fellow-
ship (to M.J.G.) and the EPSRC Mass Spectrometry service
(University of Swansea). We are also grateful to Barrie Martin
(AstraZeneca R&D Charnwood, U.K.) for useful discussion, and
Johnson Matthey for the loan of Pd(OAc)2. This paper is dedicated
to the memory of Dr. Jonathan Spencer.
(11) Ryabov, A. D. Chem. ReV. 1990, 90, 403. (b) Davies, D. L.; Donald,
S. M. A.; Macgregor, S. A J. Am. Chem. Soc. 2005, 127, 13754.
(12) For the monodeuterioamine d-1a we observed a kinetic isotope effect of
2.27; see Supporting Information for details.
(13) (a) Friedlein, F. K.; Kromm, K.; Hampel, F.; Gladysz, J. A. Chem.sEur.
J. 2006, 12, 5267. (b) Giri, R.; Liang, J.; Lei, J.; Li, J.; Wang, D.; Chen,
X.; Naggar, I. C.; Guo, C.; Foxman, B. M.; Yu, J. Angew. Chem., Int. Ed.
2005, 44, 7420. (c) Moyano, A.; Rosol, M.; Moreno, R. M.; Lopez, C.;
Maestro, M. A. Angew. Chem., Int. Ed. 2005, 44, 1865. (d) Ukhin, L. Y.;
Dolgopolova, N. A.; Kuz’mina, L. G.; Struchkov, Y. T. J. Organomet.
Chem. 1981, 210, 263.
(14) We do not believe that this reaction proceeds through a directed Pd(II)-
catalyzed iodination, followed by amination of the C-I bond. See : Mei,
T.-S.; Giri, R.; Maugel, N.; Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47,
6452. Treatment of the corresponding iodo-biphenyl amine (1o) under the
oxidative Pd(II) conditions affords the same product, 2o, as seen in the
tandem reaction.
Supporting Information Available: Experimental data and proce-
dures for all compounds. The material is available free of charge via
JA806543S
9
16186 J. AM. CHEM. SOC. VOL. 130, NO. 48, 2008