M. I. Lansdell et al. / Bioorg. Med. Chem. Lett. 18 (2008) 4944–4947
4947
2. (a) Wright, E. M.; Turk, E.; Hager, K.; Lescale-Matys, L.; Hirayama, B.;
Supplisson, S.; Loo, D. D. F. Acta Physiol. Scand. Suppl. 1992, 607, 201; (b)
Wright, E. M.; Hirayama, B.; Hazama, A.; Loo, D. D. F.; Supplisson, S.; Turk, E.;
Hager, K. M. Soc. Gen. Physiol. Ser. 1993, 48, 229.
3. (a) Wells, R. G.; Pajor, A. M.; Kanai, Y.; Turk, E.; Wright, E. M.; Hediger, M. A. Am.
J. Physiol. 1992, 263, F459; (b) Kanai, Y.; Lee, W.-S.; You, G.; Brown, D.; Hediger,
M. A. J. Clin. Invest. 1994, 93, 397.
4. (a) van den Heuvel, L. P.; Assink, K.; Willemsen, M.; Monnens, L. Hum. Genet.
2002, 111, 544; (b) Santer, R.; Kinner, M.; Lassen, C. L.; Schneppenheim, R.;
Eggert, P.; Bald, M.; Brodehl, J.; Daschner, M.; Ehrich, J. H. H.; Kemper, M.; Volti,
S. L.; Neuhaus, T.; Skovby, F.; Swift, P. G. F.; Schaub, J.; Klaerke, D. J. Am. Soc.
Nephrol. 2003, 14, 2873; (c) Francis, J.; Zhang, J.; Farhi, A.; Carey, H.; Geller, D. S.
Nephrol. Dial. Transplant. 2004, 19, 2893; (d) Kleta, R.; Stuart, C.; Gill, F. A.; Gahl,
W. A. Mol. Genet. Metab. 2004, 82, 56; (e) Magen, D.; Sprecher, E.; Zelikovic, I.;
Skorecki, K. Kidney Int. 2005, 67, 34.
NHBoc
NHBoc
24
Cl
O
O
AcO
HO
a
25
13
AcO
OAc
Cl
OAc
b
R2
N
R1
O
O
5. (a) Handlon, A. L. Expert Opin. Ther. Patents 2005, 15, 1531; (b) Isaji, M. Curr.
Opin. Invest. Drugs 2007, 8, 285.
6. Ehrenkranz, J. R. L.; Lewis, N. G.; Kahn, C. R.; Roth, J. Diabetes Metab. Res. Rev.
2005, 21, 31.
7. (a) Katsuno, K.; Fujimori, Y.; Takemura, Y.; Hiratochi, M.; Itoh, F.; Komatsu, Y.;
Fujikura, H.; Isaji, M. J. Pharmacol. Exp. Ther. 2007, 320, 323; (b) Pajor, A. M.;
Randolph, K. M.; Kerner, S. A.; Smith, C. D. J. Pharmacol. Exp. Ther. 2008, 324, 985.
8. Meng, W.; Ellsworth, B. A.; Nirschl, A. A.; McCann, P. J.; Patel, M.; Girotra, R. N.;
Wu, G.; Sher, P. M.; Morrison, E. P.; Biller, S. A.; Zahler, R.; Deshpande, P. P.;
Pullockaran, A.; Hagan, D. L.; Morgan, N.; Taylor, J. R.; Obermeier, M. T.;
Humphreys, W. G.; Khanna, A.; Discenza, L.; Robertson, J. G.; Wang, A.; Han, S.;
Wetterau, J. R.; Janovitz, E. B.; Flint, O. P.; Whaley, J. M.; Washburn, W. N. J. Med.
Chem. 2008, 51, 1145.
HO
HO
OH
d
OH
26a R1 = H, R2 = H
26b R1 = Me, R2 =H
27, 28
c
Scheme 3. Reagents and conditions: (a) PPh3, DIAD, THF, 65%; (b) i—NH3/MeOH,
ii—HCl/MeOH, 84% (over 2 steps); (c) i—ethylformate, EtOH, reflux, ii—BH3.THF,
THF, reflux, 79% (over 2 steps); (d) 5-carboxytetramethylrhodamine succinimidyl
ester (5-TAMRA, SE), or 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-
3-propionic acid succinimidyl ester (BODIPY FL, SE), Et3N, DMF, rt.
9. Castaneda, F.; Kinne, R. K.-H. Mol. Cell. Biochem. 2005, 280, 91.
10. Middleton, R. J.; Kellam, B. Curr. Opin. Chem. Biol. 2005, 9, 517.
11. (a) Hödl, C.; Strauss, W. S. L.; Sailer, R.; Seger, C.; Steiner, R.; Haslinger, E.;
Schramm, H. W. Bioconjugate Chem. 2004, 15, 359; (b) Xie, S.-X.; Petrache, G.;
Schneider, E.; Ye, Q.-Z.; Bernhardt, G.; Seifert, R.; Buschauer, A. Bioorg. Med.
Chem. Lett. 2006, 16, 3886; (c) Cowart, M.; Gfesser, G. A.; Bhatia, K.; Esser, R.;
Sun, M.; Miller, T. R.; Krueger, K.; Witte, D.; Esbenshade, T. A.; Hancock, A. A.
Inflamm. Res. 2006, 55, S47; (d) Middleton, R. J.; Briddon, S. J.; Cordeaux, Y.;
Yates, A. S.; Dale, C. L.; George, M. W.; Baker, J. G.; Hill, S. J.; Kellam, B. J. Med.
Chem. 2007, 50, 782; (e) Amon, M.; Ligneau, X.; Camelin, J.-C.; Berrebi-
Bertrand, I.; Schwartz, J.-C.; Stark, H. ChemMedChem 2007, 2, 708; (f) Schneider,
E.; Keller, M.; Brennauer, A.; Hoefelschweiger, B. K.; Gross, D.; Wolfbeis, O. S.;
Bernhardt, G.; Buschauer, A. ChemBioChem 2007, 8, 1981; (g) Singleton, D. H.;
Boyd, H.; Steidl-Nichols, J. V.; Deacon, M.; de Groot, M. J.; Price, D.; Nettleton, D.
O.; Wallace, N. K.; Troutman, M. D.; Williams, C.; Boyd, J. G. J. Med. Chem. 2007,
50, 2931; (h) Jones, L. H.; Randall, A.; Napier, C.; Trevethick, M.; Sreckovic, S.;
Watson, J. Bioorg. Med. Chem. Lett. 2008, 18, 825.
Table 3
SGLT2 inhibition data for compounds 27-28
R1
R2
SGLT2 IC50 (nM)
a,b
Compound
O
O
-
N+
O
27a
27b
H
Me
55 (54, 55)
154 (107, 200)
O
N
12. Deacon, M.; Singleton, D.; Szalkai, N.; Pasieczny, R.; Peacock, C.; Price, D.; Boyd, J.;
Boyd, H.; Steidl-Nichols, J.; Williams, C. J. Pharmacol. Toxicol. Methods 2007, 55,
255.
13. The more ambitious approach of incorporating the fluorophore within the
minimum pharmacophore to actively contribute to SGLT2-inhibition was
briefly explored, but was found to be insufficiently promising.
F
F
O
B N
28a
28b
H
Me
123 (120, 126)
95 (91, 98)
N
14. Eckhardt, M.; Eickelmann, P.; Himmelsbach, F.; Barsoumian, E. L.; Leo, T.
WO2005092877.
15. All fluorophores were purchased from Invitrogen (Molecular Probes), with the
exception of Cy3B NHS ester and NBD chloride, which were purchased from GE
Healthcare and Sigma–Aldrich, respectively.
a
Inhibition of uptake of [14C]-
a-methyl-D-glucopyranoside in CHO cells stably
transfected with human SGLT2.17
b
Values are means of n = 2 (individual measurements in parentheses).
16. The structure of dapagliflozin 3 had not been disclosed by the time this work
was completed. We had employed close-analogue 4 (Washburn W.; Meng W.
US20060063722), alongside phlorizin 1, to benchmark our SGLT2 assay. In a
later, slightly modified, format of the assay, we have since established that 3
and 4 are equipotent.
17. Methodology analogous to that described for SGLT1 by: Lin, J.-T.; Kormanec, J.;
Wehner, F.; Wielert-Badt, S.; Kinne, R. K.-H. Biochim. Biophys. Acta 1998, 1373, 309.
18. Adlington, R. M.; Baldwin, J. E.; Becker, G. W.; Chen, B.; Cheng, L.; Cooper, S. L.;
Hermann, R. B.; Howe, T. J.; McCoull, W.; McNulty, A. M.; Neubauer, B. L.;
Pritchard, G. J. J. Med. Chem. 2001, 44, 1491.
19. Preparation of 27a: 5-TAMRA-SE (5 mg, 0.095 mmol) and amine 26a (5.7 mg,
0.011 mmol) were dissolved in anhydrous DMF (0.5 mL) and triethylamine
(0.019 mL, 0.11 mmol) was then added. The solution was stirred at room
temperature for 16 hours in the dark. Solvents were removed in vacuo and the
residue was stored under N2 (g) in the freezer until purification, which was
was either directly conjugated with a fluorophore, or was first meth-
ylated before conjugation. TAMRA-labelled 27a19 (Table 3) was
found to be considerably more potent than its alkyl-chain-linked
analogue 21, notably over 10-fold more potent than phlorizin 1
and reaching within 5-fold of the potency achieved by 4, despite
the burden of the fluorophore. In contrast, combination of the phe-
nyl-based linker (28a/b) with a BODIPY fluorophore provided more
modest improvements versus the alkyl chain analogues 22e/f.
In summary, we have described the first examples of fluoro-
phore-labelled SGLT2 inhibitors. The mode of linking the fluoro-
phore to the SGLT2 pharmacophore was found to be crucial in
achieving good potency. A variety of fluorophores are broadly
acceptable, which offers the potential for fine-tuning of the fluores-
cent properties,20 and sufficient potency has been attained that we
anticipate such compounds could find use as pharmacological tools
in assay development or other investigations of SGLT2.
performed by preparative HPLC (Column: Waters XBridge C18,
5 lm,
19 Â 150 mm, 20 mL/min; Eluent: gradient 20–55% MeCN in water over
15 minutes, then 85% for 5 min, Rt 11.2 min). The product was obtained as a
dark purple solid by freeze drying (8.3 mg, 96%). 1H NMR (CD3OD, 300 MHz,)
rotamers d 3.26–3.58 (m, 16H), 3.75 (dd, 2H), 4.02 (d, 2H), 4.08 (d, 1H), 4.63 (s,
2H), 5.04 (s, 2H), 6.87 (d, 2H), 6.90 (s, 2H), 7.00 (d, 2H), 7.11 (d, 2H), 7.22–7.40 (m,
10H), 8.04 (d, 1H), 8.51 (d, 1H). MS (ESI) m/z 912.34 (MH)+. Chemical purity by
HPLC: Waters XBridge C18, 3 Â 150 mm, 5
lm, 0.5 mL/min, gradient 5-95%
MeCN in 2% aq. HCO2 H over 15 min, then held for 10 minutes, Rt 10.61 min,
95.93% (223 nm).
References and notes
20. The excitation-emission profiles of compounds 23d, 27a, and 28b were
measured and found to be essentially unchanged from the corresponding
commercially available fluorophore precursors.
1. (a) Wright, E. M. Am. J. Physiol. Renal Physiol. 2001, 280, F10; (b) Wright, E. M.;
Turk, E. Pflugers Arch. Eur. J. Physiol. 2004, 447, 510.