ORGANIC
LETTERS
2007
Vol. 9, No. 5
761-764
Arenes to Anilines and Aryl Ethers by
Sequential Iridium-Catalyzed Borylation
and Copper-Catalyzed Coupling
C. Christoph Tzschucke, Jaclyn M. Murphy, and John F. Hartwig*
Department of Chemistry, Yale UniVersity, P.O. Box 208107,
New HaVen, Connecticut 06520, and Department of Chemistry,
UniVersity of Illinois, 600 South Matthews AVenue, Urbana, Illinois 61801
Received November 30, 2006
ABSTRACT
N-Alkyl- and N-arylanilines were synthesized from arenes by a two-step sequence of iridium-catalyzed borylation and copper-catalyzed coupling
with amines. Diaryl ethers were obtained by a related sequence of arene borylation, followed by coupling with phenols. In particular, 3,5-
disubstituted arylamines and aryl ethers were prepared by initiating this sequence with meta-substituted arenes.
The iridium-catalyzed borylation of arenes1-8 is a one-step
method to generate aryl boronates, which are convenient
synthetic intermediates. The most active catalyst (referred
to herein as the IMH catalyst) for the conversion of arenes
to arylboronic esters is generated from di-tert-butylbipyridine
and [Ir(COD)(OMe)]2 and was developed jointly by the
Ishiyama and Miyaura group and our group.1a,2-4
The direct conversion of arenes to arylamines is limited.9
We envisioned a route from arenes to arylamines by the
combination of C-H borylation of arenes and conversion
of the arylboronic ester to the arylamine. Chan and Lam first
reported the copper-mediated conversion of arylboronic acids
to arylamines,10,11 and numerous systems for this process
have now been reported.10-14 A similar route to biaryl ethers
by the borylation of arenes, followed by copper-mediated
coupling of arylboronic acids with phenols,10b,15 can be
envisioned.
(1) (a) Ishiyama, T.; Takagi, J.; Ishida, K.; Miyaura, N.; Anastasi, N.
R.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 390. (b) Chotana, G. A.;
Rak, M. A.; Smith, M. R., III. J. Am. Chem. Soc. 2005, 127, 10539.
(2) Ishiyama, T.; Takagi, J.; Hartwig, J. F.; Miyaura, N. Angew. Chem.,
Int. Ed. 2002, 41, 3056.
(3) (a) Ishiyama, T.; Nobuta, Y.; Hartwig, J. F.; Miyaura, N. Chem.
Commun. 2003, 2003, 2924. (b) Boller, T. M.; Murphy, J. M.; Hapke, M.;
Ishiyama, T.; Miyaura, N.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127,
14263.
(4) Ishiyama, T.; Takagi, J.; Yonekawa, Y.; Hartwig, J. F.; Miyaura, N.
AdV. Synth. Catal. 2003, 345, 1103.
(5) Cho, J.-Y.; Tse, M. K.; Holmes, D.; Maleczka, R. E., Jr.; Smith, M.
R., III. Science 2002, 295, 305.
Although many methods for the functionalization of arenes
by electrophilic aromatic substitution are known, and some
of these electrophilic substitutions generate precursors to
(9) (a) Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. J. Am. Chem. Soc. 2006,
128, 9048. (b) Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. J. Am. Chem.
Soc. 2005, 127, 14560. (c) Hoffmann, N.; Muhler, M. Catal. Lett. 2005,
103, 155. (d) Yamamoto, M.; Matsubara, S. Chem. Lett. 2007, 36, 172. (e)
Yu, T.; Hu, C.; Wang, W. Chem. Lett. 2005, 34, 406.
(6) Maleczka, R. E., Jr.; Shi, F.; Holmes, D.; Smith, M. R., III. J. Am.
Chem. Soc. 2003, 125, 7792.
(7) Holmes, D.; Chotana, G. A.; Maleczka, R. E., Jr.; Smith, M. R., III.
Org. Lett. 2006, 8, 1407.
(10) (a) Lam, P. Y. S.; Clark, C. G.; Saubern, S.; Adams, J.; Winters,
M. P.; Chan, D. M. T.; Combs, A. Tetrahedron Lett. 1998, 39, 2941. (b)
Chan, D. M. T.; Monaco, K. L.; Wang, R.-P.; Winters, M. P. Tetrahedron
Lett. 1998, 39, 2933.
(8) Shi, F.; Smith, M. R., III; Maleczka, R. E., Jr. Org. Lett. 2006, 8,
1411.
(11) Chan, D. M. T.; Lam, P. Y. S. In Boronic Acids; Hall, D. G., Ed.;
Wiley-VCH: Weinheim, Germany, 2005; pp 205-240.
10.1021/ol062902w CCC: $37.00
© 2007 American Chemical Society
Published on Web 02/03/2007