Full Paper
doi.org/10.1002/ejoc.202000961
EurJOC
European Journal of Organic Chemistry
Chem. Eur. J. 2017, 23, 15852–15863; g) E. A. Merritt, B. Olofsson, Angew.
Chem. Int. Ed. 2009, 48, 9052–9070; Angew. Chem. 2009, 121, 9214; h) K.
Muniz, Acc. Chem. Res. 2018, 51, 1507–1519.
was carried out using the core facilities of TPU′s “Physical and
chemical methods of analysis”.
[9] a) M. Tiffner, L. Stockhammer, J. Schorgenhumer, K. Roser, M. Waser, Mol-
ecules 2018, 23, 1142; b) S. Alazet, J. Preindl, R. Simonet-Davin, S. Nicolai,
A. Nanchen, T. Meyer, J. Waser, J. Org. Chem. 2018, 83, 12334–12356;
c) Y. Shinomoto, A. Yoshimura, H. Shimizu, M. Yamazaki, V. V. Zhdankin,
A. Saito, Org. Lett. 2015, 17, 5212–5215; d) A. Sharma, J. F. Hartwig,
Nature 2015, 517, 600–604; e) M. V. Vita, J. r. m. Waser, Org. Lett. 2013,
15, 3246–3249.
[10] a) K. Kiyokawa, D. Okumatsu, S. Minakata, Angew. Chem. Int. Ed. 2019,
58, 8907–8911; Angew. Chem. 2019, 131, 8999; b) X.-H. Hu, X.-F. Yang,
T.-P. Loh, ACS Catal. 2016, 6, 5930–5934; c) K. Kiyokawa, T. Kosaka, T.
Kojima, S. Minakata, Angew. Chem. Int. Ed. 2015, 54, 13719–13723;
Angew. Chem. 2015, 127, 13923; d) A. A. Kantak, L. Marchetti, B. DeBoef,
Chem. Commun. 2015, 51, 3574–3577.
[11] a) J. A. Souto, C. Martinez, I. Velilla, K. Muniz, Angew. Chem. Int. Ed. 2013,
52, 1324–1328; Angew. Chem. 2013, 125, 1363; b) K. Ishida, H. Togo, K.
Moriyama, Chem. Asian J. 2016, 11, 3583–3588; c) K. Moriyama, K. Ishida,
H. Togo, Chem. Commun. 2015, 51, 2273–2276; d) R. M. Romero, J. A.
Souto, K. Muniz, J. Org. Chem. 2016, 81, 6118–6122; e) H. Wang, Y. Cheng,
P. Becker, G. Raabe, C. Bolm, Angew. Chem. Int. Ed. 2016, 55, 12655–
12658; Angew. Chem. 2016, 128, 12845; f) H. Wang, D. Zhang, C. Bolm,
Chem. Eur. J. 2018, 24, 14942–14945; g) J. A. Souto, D. Zian, K. Muniz, J.
Am. Chem. Soc. 2012, 134, 7242–7245; h) J. A. Souto, P. Becker, A. Iglesias,
K. Muniz, J. Am. Chem. Soc. 2012, 134, 15505–15511.
Keywords: Hypervalent compounds · Iodine · Sigmatropic
rearrangement · Sulfilimines · Synthetic methods
[1] a) D. Kaiser, I. Klose, R. Oost, J. Neuhaus, N. Maulide, Chem. Rev. 2019,
119, 8701–8780; b) J. D. Neuhaus, R. Oost, J. Merad, N. Maulide (Eds.),
Top. Curr. Chem. 2018, volume 376, pp. 1–47; c) L.-Q. Lu, T.-R. Li, Q. Wang,
W.-J. Xiao, Chem. Soc. Rev. 2017, 46, 4135–4149; d) V. Aggarwal, J. Rich-
ardson, Sci. Synth. 2004, 27, 21–104; e) J. S. Clark, Nitrogen, Oxygen and
Sulfur Ylide Chemistry, Oxford University Press, 2002, pp. 1–113; f) S. N.
Lakeev, I. O. Maydanova, F. Z. Galin, G. A. Tolstikov, Russ. Chem. Rev. 2001,
70, 655–672; g) J.-F. Briere, P. Metzner, Organosulfur Chemistry in Asym-
metric Synthesis, Wiley-VCH Verlag GmbH & Co. KGaA, 2008, pp. 179–
208; h) V. K. Aggarwal, C. L. Winn, Acc. Chem. Res. 2004, 37, 611–620;
i) Y. Zhang, J. Wang, Coord. Chem. Rev. 2010, 254, 941–953; j) R. Bach,
S. Harthong, J. Lacour, Vol. 3, Elsevier B. V. 2014, pp. 992–1037; k) T. H.
West, S. S. M. Spoehrle, K. Kasten, J. E. Taylor, A. D. Smith, ACS Catal.
2015, 5, 7446–7479.
[2] a) V. Bizet, C. M. M. Hendriks, C. Bolm, Chem. Soc. Rev. 2015, 44, 3378–
3390; b) P. C. Taylor, Sulfur Rep. 1999, 21, 241–280; c) T. L. Gilchrist, C. J.
Moody, Chem. Rev. 1977, 77, 409–435; d) D. Stalke, Chem. Commun.
2012, 48, 9559–9573; e) X. Tian, L. Song, A. S. K. Hashmi, Chem. Eur. J.
2020, 26, 3197–3204.
[3] a) N. Gaggero, L. D′Accolti, S. Colonna, R. Curci, Tetrahedron Lett. 1997,
38, 5559–5562; b) Y. Liu, H. Wang, X. Yang, Tetrahedron 2019, 75, 4697–
4702; c) C. M. M. Hendriks, P. Lamers, J. Engel, C. Bolm, Adv. Synth. Catal.
2013, 355, 3363–3368; d) O. Garcia Mancheno, C. Bolm, Org. Lett. 2007,
9, 2951–2954; e) O. Garcia Mancheno, O. Bistri, C. Bolm, Org. Lett. 2007,
9, 3809–3811; f) H. Marzag, M. Schuler, A. Tatibouet, V. Reboul, Eur. J.
Org. Chem. 2017, 2017, 896–900.
[12] a) P. Dauban, R. H. Dodd, Synlett 2003, 1571–1586; b) D. Karila, R. H.
Dodd, Curr. Org. Chem. 2011, 15, 1507–1538; c) J. W. W. Chang, T. M. U.
Ton, P. W. H. Chan, Chem. Rec. 2011, 11, 331–357; d) A. Yoshimura, M. S.
Yusubov, V. V. Zhdankin, ARKIVOC 2019, 228–255.
[13] a) J. Wang, M. Frings, C. Bolm, Angew. Chem. Int. Ed. 2013, 52, 8661–
8665; Angew. Chem. 2013, 125, 8823; b) H. Takada, Y. Nishibayashi, K.
Ohe, S. Uemura, C. P. Baird, T. J. Sparey, P. C. Taylor, J. Org. Chem. 1997,
62, 6512–6518; c) H. Takada, Y. Nishibayashi, K. Ohe, S. Uemura, Chem.
Commun. 1996, 931–932.
[4] a) A. Armstrong, L. Challinor, J. H. Moir, Angew. Chem. Int. Ed. 2007, 46,
5369–5372; Angew. Chem. 2007, 119, 5465; b) C. K. Prier, T. K. Hyster,
C. C. Farwell, A. Huang, F. H. Arnold, Angew. Chem. Int. Ed. 2016, 55,
4711–4715; Angew. Chem. 2016, 128, 4789; c) X. Xu, C. Li, Z. Tao, Y. Pan,
Green Chem. 2017, 19, 1245–1249; d) Y. Jiang, F. Mo, D. Qiu, C. Kuang, Y.
Zhang, J. Wang, Chin. J. Chem. 2012, 30, 2029–2035; e) T. Bach, C. Koer-
ber, J. Org. Chem. 2000, 65, 2358–2367; f) A. Armstrong, L. Challinor, R. S.
Cooke, J. H. Moir, N. R. Treweeke, J. Org. Chem. 2006, 71, 4028–4030; g)
M. Murakami, T. Katsuki, Tetrahedron Lett. 2002, 43, 3947–3949.
[5] a) Z. Guo, Y. Xu, W. Quan, P. Xie, J. Jiang, Y. Peng, L. Wu, U. R. Haroon, L.
Wang, X. Liu, Bioorg. Med. Chem. Lett. 2019, 29, 1133–1137; b) L. Craine,
M. Raban, Chem. Rev. 1989, 89, 689–712; c) I. V. Koval, Usp. Khim. 1996,
65, 452–473; d) J. J. Petkowski, W. Bains, S. Seager, J. Nat. Prod. 2018, 81,
423–446.
[14] a) A. A. Lamar, K. M. Nicholas, J. Org. Chem. 2010, 75, 7644–7650; b)
M. D. Hopkins, K. A. Scott, B. C. DeMier, H. R. Morgan, J. A. Macgruder,
A. A. Lamar, Org. Biomol. Chem. 2017, 15, 9209–9216; c) K. Kiyokawa,
T. Kosaka, S. Minakata, Org. Lett. 2013, 15, 4858–4861; d) A. Yoshimura,
C. L. Makitalo, M. E. Jarvi, M. T. Shea, P. S. Postnikov, G. T. Rohde,
V. V. Zhdankin, A. Saito, M. S. Yusubov, Molecules 2019, 24, 979–989;
e) T. Baba, S. Takahashi, Y. Kambara, A. Yoshimura, V. N. Nemykin, V. V.
Zhdankin, A. Saito, Adv. Synth. Catal. 2017, 359, 3860–3864; f) A. Saito,
Y. Kambara, T. Yagyu, K. Noguchi, A. Yoshimura, V. V. Zhdankin, Adv.
Synth. Catal. 2015, 357, 667–671; g) Y. Kobayashi, S. Masakado, Y. Take-
moto, Angew. Chem. Int. Ed. 2018, 57, 693–697; Angew. Chem. 2018, 130,
701; h) L. A. Combee, B. Raya, D. Wang, M. K. Hilinski, Chem. Sci. 2018,
9, 935–939; i) P. Shukla, S. Mahata, A. Sahu, M. Singh, V. K. Rai, A. Rai,
RSC Adv. 2017, 7, 48723–48729.
[15] H. Zhang, B. Wang, H. Yi, Y. Zhang, J. Wang, Org. Lett. 2015, 17, 3322–
3325.
[16] D. Cheng, S. Zhu, Z. Yu, T. Cohen, J. Am. Chem. Soc. 2001, 123, 30–34.
[17] S. Tanaka, Y. Furusho, T. Endo, J. Polym. Sci., Part A J. Polym. Sci., Part A:
Polym. Chem. 2013, 51, 222–227.
[18] A. Yoshimura, M. W. Luedtke, V. V. Zhdankin, J. Org. Chem. 2012, 77,
2087–2091.
[19] D. Kawauchi, H. Ueda, H. Tokuyama, Eur. J. Org. Chem. 2019, 2019, 2056–
2060.
[6] a) W. R. Bowman, D. N. Clark, R. J. Marmon, Tetrahedron 1994, 50, 1275–
1294; b) W. R. Bowman, D. N. Clark, R. J. Marmon, Tetrahedron Lett. 1991,
32, 6441–6444.
[7] a) B. Olofsson, M. Ilan, Z. Rappoport, Patai's The Chemistry of Hypervalent
Halogen Compounds, John Wiley & Sons, Chichester, 2019; b) T. Wirth
(Ed.), Top. Curr. Chem. 2016, volume 373, pp. 1–310; c) V. V. Zhdankin, in
Hypervalent Iodine Chemistry: Preparation, Structure and Synthetic Applica-
tion of Polyvalent Iodine Compounds, John Wiley & Sons Ltd, 2014; d) A.
Parra, Chem. Rev. 2019, 119, 12033–12088; e) X. Wang, A. Studer, Acc.
Chem. Res. 2017, 50, 1712–1724; f) A. Yoshimura, V. V. Zhdankin, Chem.
Rev. 2016, 116, 3328–3435.
[8] a) F. Le Vaillant, J. Waser, Chem. Sci. 2019, 10, 8909–8923; b) D. P. Hari, P.
Caramenti, J. Waser, Acc. Chem. Res. 2018, 51, 3212–3225; c) J. Charpen-
tier, N. Fruh, A. Togni, Chem. Rev. 2015, 115, 650–682; d) A. Yoshimura,
A. Saito, V. V. Zhdankin, Chem. Eur. J. 2018, 24, 15156–15166; e) M. Wang,
S. Chen, X. Jiang, Chem. Asian J. 2018, 13, 2195–2207; f) D. R. Stuart,
[20] H. Sashida, T. Tsuchiya, Chem. Pharm. Bull. 1986, 34, 3682–3687.
[21] J. Barluenga, F. J. Fananas, R. Sanz, C. Marcos, J. M. Ignacio, Chem. Com-
mun. 2005, 933–935.
[22] P. Trillo, A. Baeza, C. Najera, J. Org. Chem. 2012, 77, 7344–7354.
Received: July 9, 2020
Eur. J. Org. Chem. 0000, 0–0
7
© 2020 Wiley-VCH GmbH