ACS Medicinal Chemistry Letters
Page 6 of 7
from the University of Michigan Chemistry–Biology Interface
(CBI) training program (NIH grant 5T32GM008597).
(10)
Lohse, M. J.; Engelhardt, S.; Eschenhagen, T. What Is
the Role of β-Adrenergic Signaling in Heart Failure?
Circ. Res. 2003, 896–906.
https://doi.org/10.1161/01.RES.0000102042.83024.C
A.
Triposkiadis, F.; Karayannis, G.; Giamouzis, G.; Skou-
larigis, J.; Louridas, G.; Butler, J. The Sympathetic
Nervous System in Heart Failure. J. Am. Coll. Cardiol.
1
2
3
4
5
6
7
8
Notes
The authors declare no competing financial interest.
(11)
ACKNOWLEDGMENT
We thank Dr. Venky Bashar, of the University of Michigan Pro-
teomic Resource Facility for assistance with tandem mass spec-
trometry efforts. We also thank Dr. Pil Lee for her technical
assistance in building a GRK5 homology model.
2009,
54
(19),
1747–1762.
9
(12)
(13)
Port, J. D.; Bristow, M. R. Altered Beta-Adrenergic Re-
ceptor Gene Regulation and Signaling in Chronic Heart
Failure. J. Mol. Cell. Cardiol. 2001, 33 (5), 887–905.
Rockman, H. A.; Chien, K. R.; Choi, D.-J.; Iaccarino,
G.; Hunter, J. J.; Ross, J.; Lefkowitz, R. J.; Koch, W. J.
Expression of a -Adrenergic Receptor Kinase 1 Inhibi-
tor Prevents the Development of Myocardial Failure in
Gene-Targeted Mice. Proc. Natl. Acad. Sci. 1998, 95
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
ABBREVIATIONS
GPCR, G protein-coupled receptor; GRK, G protein-coupled
receptor kinase; βAR, β-adrenergic receptor; AST, active site
tether; P-loop, phosphate-binding loop; MS, mass spectrometry
REFERENCES
(1)
Katritch, V.; Cherezov, V.; Stevens, R. C. Structure-
Function of the G Protein–Coupled Receptor Super-
family. Annu. Rev. Pharmacol. Toxicol. 2013, 53 (1),
032112-135923.
(12),
7000–7005.
(14)
Eckhart, A. D.; Ozaki, T.; Tevaearai, H.; Rockman, H.
A.; Koch, W. J. Vascular-Targeted Overexpression of
G Protein-Coupled Receptor Kinase-2 in Transgenic
Mice Attenuates Beta-Adrenergic Receptor Signaling
and Increases Resting Blood Pressure. Mol. Pharma-
col. 2002, 61 (4), 749–758.
Kohout, T. A. Regulation of G Protein-Coupled Recep-
tor Kinases and Arrestins During Receptor Desensiti-
zation. Mol. Pharmacol. 2003, 63 (1), 9–18.
Raake, P. W.; Vinge, L. E.; Gao, E.; Boucher, M.;
Rengo, G.; Chen, X.; DeGeorge, B. R.; Matkovich, S.;
Houser, S. R.; Most, P.; et al. G Protein–Coupled Re-
ceptor Kinase 2 Ablation in Cardiac Myocytes Before
or After Myocardial Infarction Prevents Heart Failure.
(2)
Gurevich, E. V.; Tesmer, J. J. G.; Mushegian, A.;
Gurevich, V. V. G Protein-Coupled Receptor Kinases:
More than Just Kinases and Not Only for GPCRs.
Pharmacol. Ther. 2012, 133 (1), 40–69.
Pitcher, J. A.; Freedman, N. J.; Lefkowitz, R. J. G Pro-
tein-Coupled Receptor Kinases. Annu. Rev. Biochem.
1998, 67 (1), 653–692.
Ferguson, S. S. Evolving Concepts in G Protein-Cou-
pled Receptor Endocytosis: The Role in Receptor De-
sensitization and Signaling. Pharmacol. Rev. 2001, 53
(1), 1–24.
(15)
(16)
(3)
(4)
(5)
Nogués, L.; Palacios-García, J.; Reglero, C.; Rivas, V.;
Neves, M.; Ribas, C.; Penela, P.; Mayor, F. G Protein-
Coupled Receptor Kinases (GRKs) in Tumorigenesis
and Cancer Progression: GPCR Regulators and Signal-
ing Hubs. Semin. Cancer Biol. 2018, 48, 78–90.
Steury, M. D.; McCabe, L. R.; Parameswaran, N. G
Protein-Coupled Receptor Kinases in the Inflammatory
Response and Signaling. Adv. Immunol. 2017, 136,
Hendrickx, J. O.; van Gastel, J.; Leysen, H.; Santos-
Otte, P.; Premont, R. T.; Martin, B.; Maudsley, S.
GRK5 – A Functional Bridge Between Cardiovascular
and Neurodegenerative Disorders. Front. Pharmacol.
Cho, S. Y.; Lee, B. H.; Jung, H.; Yun, C. S.; Ha, J. D.;
Kim, H. R.; Chae, C. H.; Lee, J. H.; Seo, H. W.; Oh,
K.-S. Design and Synthesis of Novel 3-(Benzo[d]Oxa-
zol-2-Yl)-5-(1-(Piperidin-4-Yl)-1H-Pyrazol-4-Yl)Pyr-
idin-2-Amine Derivatives as Selective G-Protein-Cou-
pled Receptor Kinase-2 and -5 Inhibitors. Bioorg. Med.
Circ.
Res.
2008,
103
(4),
413–422.
Thal, D. M.; Homan, K. T.; Chen, J.; Wu, E. K.; Hinkle,
P. M.; Huang, Z. M.; Chuprun, J. K.; Song, J.; Gao, E.;
Cheung, J. Y.; et al. Paroxetine Is a Direct Inhibitor of
G Protein-Coupled Receptor Kinase 2 and Increases
Myocardial Contractility. ACS Chem. Biol. 2012, 7
Lymperopoulos, A.; Rengo, G.; J. Koch, W. GRK2 In-
hibition in Heart Failure: Something Old, Something
New. Curr. Pharm. Des. 2012, 18 (2), 186–191.
Raake, P. W. J.; Schlegel, P.; Ksienzyk, J.; Reinkober,
J.; Barthelmes, J.; Schinkel, S.; Pleger, S.; Mier, W.;
Haberkorn, U.; Koch, W. J.; et al. AAV6.ΒARKct Car-
diac Gene Therapy Ameliorates Cardiac Function and
Normalizes the Catecholaminergic Axis in a Clinically
Relevant Large Animal Heart Failure Model. Eur.
Heart J. 2013, 34, 1437–1447.
(17)
(6)
(7)
(18)
(19)
(8)
(9)
(20)
(21)
Cannavo, A.; Liccardo, D.; Koch, W. J. Targeting Car-
diac β-Adrenergic Signaling via GRK2 Inhibition for
Heart Failure Therapy. Front. Physiol. 2013, 4, 1–7.
Penela, P.; Murga, C.; Ribas, C.; Tutor, A.; Peregrin,
S.; Mayorjr, F. Mechanisms of Regulation of G Pro-
tein-Coupled Receptor Kinases (GRKs) and
Chem.
Lett.
2013,
23
(24),
6711–6716.
Huang, Z. M.; Gold, J. I.; Koch, W. J. G Protein-Cou-
pled Receptor Kinases in Normal and Failing Myocar-
dium. Front. Biosci. 2011, 16 (1), 3057–3060.
ACS Paragon Plus Environment