Organic Letters
Letter
histamine H1 and HDAC6 inhibitory activities.12 In addition, 7a
is known to be converted to the UV-absorbing prenostodione
core by aldol condensation, followed by E selective E1cB
elimination (Scheme 3).13
indoles: (e) Kubota, K.; Hayama, K.; Iwamoto, H.; Ito, H. Angew.
Chem., Int. Ed. 2015, 54, 8809. (f) Chen, L.; Shen, J.-J.; Gao, Q.; Xu, S.
Chem. Sci. 2018, 9, 5855.
(3) (a) Torregrosa, R. R. P.; Ariyarathna, Y.; Chattopadhyay, K.;
Tunge, J. A. J. Am. Chem. Soc. 2010, 132, 9280. (b) Recio, A., III;
Heinzman, J. D.; Tunge, J. A. Chem. Commun. 2012, 48, 142. (c) Yang,
M.-H.; Hunt, J. R.; Sharifi, N.; Altman, R. A. Angew. Chem., Int. Ed.
2016, 55, 9080.
Scheme 3. Aldol Condensation with Aldehyde
(4) Reviews on nucleophilic η1-allylpalladium species: (a) Tamaru, Y.
J. Organomet. Chem. 1999, 576, 215. (b) Marshall, J. A. Chem. Rev.
́
2000, 100, 3163. (c) Szabo, K. J. Chem. - Eur. J. 2004, 10, 5268.
́
(d) Szabo, K. J. Synlett 2006, 2006, 811. (e) Zanoni, G.; Pontiroli, A.;
Marchetti, A.; Vidari, G. Eur. J. Org. Chem. 2007, 2007, 3599.
(f) Spielmann, K.; Niel, G.; de Figueiredo, R. M.; Campagne, J.-M.
Chem. Soc. Rev. 2018, 47, 1159.
(5) Recent reviews on CO2 incorporation reactions: (a) Sakakura, T.;
Choi, J.-C.; Yasuda, H. Chem. Rev. 2007, 107, 2365. (b) Cokoja, M.;
̈
Bruckmeier, C.; Rieger, B.; Herrmann, W. A.; Kuhn, F. E. Angew. Chem.,
Int. Ed. 2011, 50, 8510. (c) Tsuji, Y.; Fujihara, T. Chem. Commun. 2012,
48, 9956. (d) Zhang, L.; Hou, Z. Chem. Sci. 2013, 4, 3395. (e) Kielland,
N.; Whiteoak, C. J.; Kleij, A. W. Adv. Synth. Catal. 2013, 355, 2115.
(f) Cai, X.; Xie, B. Synthesis 2013, 45, 3305. (g) Maeda, C.; Miyazaki, Y.;
In conclusion, we have successfully developed the first Pd-
catalyzed dearomative carboxylation of indole derivatives with
CO2. Carboxylation of 3-indolylmethanol with an unprotected
alcohol moiety afforded 3-methyleneindoline-2-carboxylates in
high yields. On the other hand, 2-indolylmethyl acetates were
converted into doubly carboxylated products. Extensive efforts
are now being undertaken toward the double carboxylation of
various other heterocycles, and the results will be reported in due
course.
̈
Ema, T. Catal. Sci. Technol. 2014, 4, 1482. (h) Borjesson, M.; Moragas,
T.; Gallego, D.; Martin, R. ACS Catal. 2016, 6, 6739. (i) Zhang, Z.; Ju,
́
T.; Ye, J.-H.; Yu, D.-G. Synlett 2017, 28, 741. (j) Tortajada, A.; Julia-
́
̈
Hernandez, F.; Borjesson, M.; Moragas, T.; Martin, R. Angew. Chem.,
ylation: (k) Song, J.; Liu, Q.; Liu, H.; Jiang, X. Eur. J. Org. Chem. 2018,
2018, 696.
ASSOCIATED CONTENT
■
S
* Supporting Information
(6) Dearomative transformation of indoles using CO2 as a C1 source:
(a) Zhu, D.-Y.; Fang, L.; Han, H.; Wang, Y.; Xia, J.-B. Org. Lett. 2017,
19, 4259. (b) Ye, J.-H.; Zhu, L.; Yan, S.-S.; Miao, M.; Zhang, X.-C.;
Zhou, W.-J.; Li, J.; Lan, Y.; Yu, D.-G. ACS Catal. 2017, 7, 8324.
(7) (a) Higuchi, Y.; Mita, T.; Sato, Y. Org. Lett. 2017, 19, 2710. Our
recent achievements of Pd-catalyzed allylic carboxylations: (b) Mita,
T.; Higuchi, Y.; Sato, Y. Chem. - Eur. J. 2015, 21, 16391. (c) Mita, T.;
Tanaka, H.; Higuchi, Y.; Sato, Y. Org. Lett. 2016, 18, 2754.
(8) Saito, T.; Munakata, H.; Imoto, H. Inorg. Synth. 1977, 17, 83.
(9) Catalytic double carboxylations using CO2: (a) Takimoto, M.;
Kawamura, M.; Mori, M.; Sato, Y. Synlett 2005, 2005, 2019.
(b) Fujihara, T.; Horimoto, Y.; Mizoe, T.; Sayyed, F. B.; Tani, Y.;
Terao, J.; Sakaki, S.; Tsuji, Y. Org. Lett. 2014, 16, 4960. (c) Tortajada,
A.; Ninokata, R.; Martin, R. J. Am. Chem. Soc. 2018, 140, 2050.
(10) Carboxylation of indoles at the 3-potision: (a) Inamoto, K.;
Asano, N.; Nakamura, Y.; Yonemoto, M.; Kondo, Y. Org. Lett. 2012, 14,
2622. (b) Yoo, W.-J.; Capdevila, M. G.; Du, X.; Kobayashi, S. Org. Lett.
2012, 14, 5326. (c) Xin, Z.; Lescot, C.; Friis, S. D.; Daasbjerg, K.;
Skrydstrup, T. Angew. Chem., Int. Ed. 2015, 54, 6862. (d) Nemoto, K.;
Tanaka, S.; Konno, M.; Onozawa, S.; Chiba, M.; Tanaka, Y.; Sasaki, Y.;
Okubo, R.; Hattori, T. Tetrahedron 2016, 72, 734.
The Supporting Information is available free of charge on the
Experimental details and characterization data (PDF)
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was financially supported by a Grant-in-Aid for
Scientific Research (C) (No. 18K05096) and Grant-in-Aid for
Scientific Research (B) (No. 26293001) from JSPS, and by JST
ACT-C (No. JPMJCR12YM). T.M. thanks the Naito
Foundation and Takeda Science Foundation for the financial
support. Y.H. thanks JSPS for a fellowship (No. 16J03988).
(11) Base-mediated carboxylation of enamides under transition-
metal-free conditions: Zhang, Z.; Zhu, C.-J.; Miao, M.; Han, J.-L.; Ju,
T.; Song, L.; Ye, J.-H.; Li, J.; Yu, D.-G. Chin. J. Chem. 2018, 36, 430.
(12) (a) Abou-Gharbia, M. A. U.S. Patent Appl. US4748247 A, 1988.
(b) Wang, Z.; Li, L. Patent Appl. WO2013/078544 2013.
(13) Badenock, J. C.; Jordan, J. A.; Gribble, G. W. Tetrahedron Lett.
2013, 54, 2759.
REFERENCES
■
(1) Reviews on dearomatization reactions: (a) Pape, A. R.; Kaliappan,
K. P.; Ku
̈
ndig, E. P. Chem. Rev. 2000, 100, 2917. (b) Roche, S. P.; Porco,
J. A., Jr. Angew. Chem., Int. Ed. 2011, 50, 4068. (c) Zhuo, C.-X.; Zhang,
W.; You, S.-L. Angew. Chem., Int. Ed. 2012, 51, 12662. (d) Zhuo, C.-X.;
Zheng, C.; You, S.-L. Acc. Chem. Res. 2014, 47, 2558. (e) Liang, X.-W.;
Zheng, C.; You, S.-L. Chem. - Eur. J. 2016, 22, 11918.
(2) Reviews on dearomatization of indoles: (a) Ding, Q.; Zhou, X.;
Fan, R. Org. Biomol. Chem. 2014, 12, 4807. (b) Denizot, N.;
Tomakinian, T.; Beaud, R.; Kouklovsky, C.; Vincent, G. Tetrahedron
́
Lett. 2015, 56, 4413. (c) Roche, S. P.; Youte Tendoung, J.-J.; Treguier,
B. Tetrahedron 2015, 71, 3549. (d) Zi, W.; Zuo, Z.; Ma, D. Acc. Chem.
Res. 2015, 48, 702. Recent examples for dearomative borylation of
D
Org. Lett. XXXX, XXX, XXX−XXX