subunits with short flexible spacers. At ground state,
the comparison with a model system clearly indicates that
the presence of the benzophenone subunits at the rim of the
donor core does not affect any of the spectroscopic or electro-
nic characteristics. However at the excited state, a photo-
induced intramolecular electron transfer leads to an efficient
quenching of the locally excited state. In low polar solvent,
the emission of an exciplex confirms the occurrence of a charge
transfer process which is also corroborated by the fluorescence
switch ‘on’ of the chromophore at low temperature.
The temperature effect also indicates that this quenching
pathway does not cross a potential barrier. Hence the
conformational preorganization at ground state leads to a
weak geometrical relaxation at excited one.
18 B. A. Reinhardt, L. L. Brott, S. J. Clarson, A. G. Dillard,
J. C. Bhatt, R. Kannan, L. Yuan, G. S. He and P. N. Prasad,
Chem. Mater., 1998, 10, 1863–1874.
19 C. Martineau, R. Anemian, C. Andraud, I. Wang, M. Bouriau and
´
P. L. Baldeck, Chem. Phys. Lett., 2002, 362, 291–295.
20 K. D. Belfield, K. J. Schafer, W. Mourad and B. A. Reinhardt,
J. Org. Chem., 2000, 65, 4475–4481.
21 J. F. Hartwig, M. Kawatsura, S. I. Hauck, K. H. Shaughnessy and
L. M. Alcazar-Roman, J. Org. Chem., 1999, 64, 5575–5580.
22 R. Meech and D. Phillips, J. Photochem., 1983, 23, 193–217.
23 D. V. Connor and D. Phillips, Time Correlated Single Photon
Counting, Academic Press, London, 1984.
24 T. J. V. Prazeres, A. Fedorov, S. P. Barbosa, J. M. G. Martinho
and M. r. N. Berberan-Santos, J. Phys. Chem. A, 2008, 112,
5034–5039.
25 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski,
J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant,
S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin,
M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi,
R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford,
J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui,
K. Morokuma, P. Salvador, J. J. Dannenberg, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski,
J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko,
P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox,
T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,
M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen,
M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon,
E. S. Replogle and J. A. Pople, GAUSSIAN 98 (Revision A.11),
Gaussian, Inc., Pittsburgh, PA, 2001.
References
1 A. Kapturkiewicz and J. Nowacki, J. Phys. Chem. A, 1999, 103,
8145–8155.
2 A. Kapturkiewicz, J. Herbich, J. Karpiuk and J. Nowacki, J. Phys.
Chem. A, 1997, 101, 2332–2344.
3 M. R. Wasielewski, Chem. Rev., 1992, 92, 435–461.
4 T. Hirsch, H. Port, H. C. Wolf, B. Miehlich and F. Effenberger,
J. Phys. Chem. B, 1997, 101, 4525–4535.
5 M. Niemi, N. V. Tkachenko, A. Efimov, H. Lehtivuori,
K. Ohkubo, S. Fukuzumi and H. Lemmetyinen, J. Phys. Chem.
A, 2008, 112, 6884–6892.
6 H. Imahori, N. V. Tkachenko, V. Vehmanen, K. Tamaki,
H. Lemmetyinen, Y. Sakata and S. Fukuzumi, J. Phys. Chem. A,
2001, 105, 1750–1756.
7 J. W. Park, B. A. Lee and S. Y. Lee, J. Phys. Chem. B, 1998, 102,
820–8215.
26 K. D. Belfield, M. V. Bondar, J. M. Hales, A. R. Morales,
O. V. Przhonska and K. J. Schafer, J. Fluoresc., 2005, 15, 3–11.
27 P. Najechalski, Y. Morel, O. Ste
Phys. Lett., 2001, 343, 44–48.
28 J.-F. Briere and M. Cote
3123–3129.
´
phan and P. L. Baldeck, Chem.
´
, J. Phys. Chem. B, 2004, 108,
8 Z. R. Grabowski, K. Rotkiewicz and W. Rettig, Chem. Rev., 2003,
103, 3899–4032.
29 A. C. Bhasikuttan, A. K. Singh, D. K. Palit, A. V. Sapre and
J. P. Mittal, J. Phys. Chem. A, 1998, 102, 3470–3480.
9 T. P. Le, J. E. Rogers and L. A. Kelly, J. Phys. Chem. A, 2000, 104,
6778–6785.
30 F. Bosca, G. Cosa, M. A. Miranda and J. C. Scaiano, Photochem.
´
Photobiol. Sci., 2002, 9, 704–708.
10 D. Gust, T. A. Moore and A. L. Moore, Acc. Chem. Res., 1993, 26,
198–205.
31 M. Kirchgessner, K. Sreenath and K. R. Gopidas, J. Org. Chem.,
2006, 71, 9849–9852.
11 M. Isosomppi, N. V. Tkachenko, A. E, H. Vahasalo, J. Jukola,
P. Vainiotalo and H. Lemmetyinen, Chem. Phys. Lett., 2006, 430,
36–40.
12 J. M. Warman, K. J. Smit, M. P. D. Haas, S. A. Jonker,
M. N. Paddon-Row, A. M. Oliver, J. Kroon, H. Oevering and
J. W. Verhoeven, J. Phys. Chem., 1991, 95, 1979–1987.
13 M. N. Paddon-Row, A. M. Oliver, J. M. Warman, K. J. Smit, M.
P. D. Haas, H. Oevering and J. W. Verhoeven, J. Phys. Chem.,
1988, 92, 6958–6962.
14 G. L. Closs and J. R. Miller, Science, 1988, 240, 440–447.
15 J. M. Hales, D. J. Hagan, E. W. V. Stryland, K. J. Schafer,
A. R. Morales, K. D. Belfield, P. Pacher, O. Kwon, E. Zojer and
J. L. Bredas, J. Chem. Phys., 2004, 121, 3152–3160.
16 K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer and
W. Mourad, J. Lumin., 2002, 97, 141–146.
32 S. Sumalekshmy and K. R. Gopidas, Chem. Phys. Lett., 2005, 413,
294–299.
33 J. B. Birks, Photophysics of Aromatic Molecules, Wiley-
Interscience, New York, 1970.
34 M. Maus, W. Rettig, D. Bonafoux and R. Lapouyade, J. Phys.
Chem. A, 1999, 103, 3388–3401.
35 S. J. Strickler and R. A. Berg, J. Chem. Phys., 1962, 37, 814.
36 J. Catalan, Chem. Phys., 2005, 316, 253–259.
´
37 M. P. Lettinga, H. Zuilhof and M. A. M. J. v. Zandvoort, Phys.
Chem. Chem. Phys., 2000, 2, 3697–3707.
38 C. Devadoss and R. W. Fessenden, J. Phys. Chem., 1990, 94,
4540–4549.
39 T. Shida, S. Iwata and M. Imamura, J. Phys. Chem., 1974, 78,
741–748.
40 N. Ghoneim, Spectrochim. Acta, Part A, 2001, 57, 483–489.
41 M. J. Assael, N. K. Dalaouti and J. H. Dymond, Int. J.
Thermophys., 2000, 21, 291–299.
17 K. D. Belfield, M. V. Bondar, F. E. Hernandez, O. V. Przhonska
and S. Yao, J. Phys. Chem. B, 2007, 111, 12723–12729.
ꢁc
This journal is the Owner Societies 2009
2630 | Phys. Chem. Chem. Phys., 2009, 11, 2622–2630