Published on Web 11/04/2008
Ag-Catalyzed Diastereo- and Enantioselective Vinylogous
Mannich Reactions of r-Ketoimine Esters. Development of a
Method and Investigation of its Mechanism
Laura C. Wieland, Erika M. Vieira, Marc L. Snapper,* and Amir H. Hoveyda*
Department of Chemistry, Merkert Chemistry Center, Boston College,
Chestnut Hill, Massachusetts 02467
Received August 7, 2008; E-mail: amir.hoveyda@bc.edu
Abstract: An efficient diastereo- and enantioselective Ag-catalyzed method for additions of a commercially
available siloxyfuran to R-ketoimine esters is disclosed. Catalytic transformations require an inexpensive
metal salt (AgOAc) and an air stable chiral ligand that is prepared in three steps from commercially available
materials in 42% overall yield. Aryl- as well as heterocyclic substituted ketoimines can be used effectively
in the Ag-catalyzed process. Additionally, two examples regarding reactions of alkyl-substituted ketoimines
are presented. An electronically modified N-aryl group is introduced that is responsible for high reaction
efficiency (>98% conversion, 72-95% yields after purification) as well as diastereo- (up to >98:2 dr) and
enantioselectivity (up to 97:3 er or 94% ee). The new N-aryl unit is crucial for conversion of the asymmetric
vinylogous Mannich (AVM) products to the unprotected amines in high yields. Spectroscopic and X-ray
data are among the physical evidence provided that shed light on the identity of the Ag-based chiral catalysts
and some of the mechanistic subtleties of this class of enantioselective C-C bond forming processes.
1. Introduction
can be easily prepared and stored in air for an extended period
of time. Transformations are highly site-, diastereo-, and
enantioselective, require a commercially available siloxyfuran
and readily accessible substrates, and furnish products that bear
an R-quaternary amino ester.1 We have identified an electroni-
cally modified class of N-aryl ketoimines that readily undergo
AVM, affording products that can be converted to the unpro-
tected amines efficiently. Through the studies described below,
we offer insight regarding the identity of this emerging class
of Ag-based chiral catalysts for asymmetric Mannich reactions.7-9
Catalytic enantioselective additions of C-based nucleophiles
to ketoimines offer direct access to nonracemic N-substituted
quaternary carbon stereogenic centers, components of several
biologically active molecules.1 Ketoimines, however, are rela-
tively unreactive,2 often exist as a mixture of E and Z isomers,
and contain a sterically congested CdN bond that carries
difficult-to-differentiate substituents.3 There are only two re-
ported studies of Mannich-type additions4 to ketoimines. One
case corresponds to additions of aldehyde-derived enols to
geometrically constrained ketone-derived cyclic imines;5 another
disclosure outlines reactions of simple ketene acetals with
ketoimines that are mostly generated from methyl-substituted
ketones.6 Herein, we disclose a method for catalytic asymmetric
vinylogous Mannich (AVM) reactions of ketoimines; additions
are performed in the presence of a chiral Ag complex, which
(3) For a review on catalytic asymmetric reactions of ketoimines and
ketones, see: Riant, O.; Hannedouche, J. Org. Biomol. Chem. 2007,
5, 873–888.
(4) For a recent review of Mannich reactions of aldimines, see: (a)
Co´rdova, A. Acc. Chem. Res. 2004, 37, 102–112. (b) For select recent
reports of catalytic asymmetric Mannich reactions (not AVM) involv-
ing aldimines, see: Hamada, T.; Manabe, K.; Kobayashi, S. J. Am.
Chem. Soc. 2004, 126, 7768–7769. (c) Matsunaga, S.; Yoshida, T.;
Morimoto, H.; Kumagai, N.; Shibasaki, M. J. Am. Chem. Soc. 2004,
126, 8777–8785. (d) Hamashima, Y.; Sasamoto, N.; Hotta, D.; Somei,
H.; Umebayashi, N.; Sodeoka, M. Angew. Chem., Int. Ed. 2005, 44,
1525–1529. (e) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem.
Soc. 2004, 126, 11804–11805. (f) Cozzi, P. G.; Rivalta, E. Angew.
Chem., Int. Ed. 2005, 44, 3600–3603. (g) Song, J.; Wang, Y.; Deng,
L. J. Am. Chem. Soc. 2006, 128, 6048–6049. (h) Chi, Y.; Gellman,
S. H. J. Am. Chem. Soc. 2006, 128, 6804–6805. (i) Chen, Z.; Yakura,
K.; Matsunaga, S.; Shibasaki, M. Org. Lett. 2008, 10, 3239–3242.
(5) (a) Saaby, S.; Nakama, K.; Alstrup Lie, M.; Hazell, R. G.; Jørgensen,
K. A. Chem.sEur. J. 2003, 9, 6145–6154. (b) Zhuang, W.; Saaby,
S.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2004, 43, 4476–4478.
(6) Suto, Y.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2007, 129, 500–
501.
(1) For stereoselective synthesis of N-substituted quaternary carbon
stereogenic centers and quaternary R-amino acids, see: Cativiela, C.;
D´ıaz-de-Villegas, M. D. Tetrahedron: Asymmetry 2007, 18, 569–623.
(2) For catalytic enantioselective additions of C-based nucleophiles to
ketoimines, see: (CN additions) (a) Funabashi, K.; Ratni, H.; Kanai,
M.; Shibasaki, M. J. Am. Chem. Soc. 2001, 123, 10784–10785. (b)
Vachal, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 10012–
10014. (c) Masumoto, S.; Usuda, H.; Suzuki, M.; Kanai, M.; Shibasaki,
M. J. Am. Chem. Soc. 2003, 125, 5634–5635. (d) Wang, J.; Hu, X.;
Jiang, J.; Gou, S.; Huang, X.; Liu, X.; Feng, X. Angew. Chem., Int.
Ed. 2007, 46, 8468–8470. (e) Rueping, M.; Sugiono, E.; Moreth, S. A.
AdV. Synth. Catal. 2007, 349, 759-764. (Alkylmetal additions) (f)
Lauzon, C.; Charette, A. B. Org. Lett. 2006, 8, 2743–2745. (g) Fu,
P.; Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2008, 130,
5530-5541. (Allylmetal additions) (h) Wada, R.; Shibuguchi, T.;
Makino, S.; Oisaki, K.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc.
2006, 128, 7687–7691.
(7) For Ag-catalyzed Mannich-type reactions to aldimines (not AVM) in
the presence of 1, see: (a) Josephsohn, N. S.; Snapper, M. L.; Hoveyda,
A. H. J. Am. Chem. Soc. 2003, 125, 4018–4019. (b) Josephsohn, N. S.;
Carswell, E. L.; Snapper, M. L.; Hoveyda, A. H. Org. Lett. 2005, 7,
2711–2713.
9
570 J. AM. CHEM. SOC. 2009, 131, 570–576
10.1021/ja8062315 CCC: $40.75
2009 American Chemical Society