1860
P. Furet et al. / Bioorg. Med. Chem. Lett. 20 (2010) 1858–1860
6. Gerspacher, M.; et al. Bioorg. Med. Chem. Lett., in press, doi:10.1016/
7. Pissot-Soldermann, C.; et al., submitted for publication.
8. Lucet, I. S.; Fantino, E.; Styles, M.; Bamert, R.; Patel, O.; Broughton, S. E.; Walter,
M.; Burns, C. J.; Treutlein, H.; Wilks, A. F.; Rossjohn, J. Blood 2006, 107, 176 (PDB
entry code 2B7A).
9. Modeling and docking was performed with a version of MacroModel enhanced
for graphics by A. Dietrich. MacroModel: Mohamadi, F.; Richards, N. G. J.;
Guida, W. C.; Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.;
Still, W. C. J. Comput. Chem. 1990, 11, 440.
10. The ‘hinge’ is the amino-acid stretch connecting the N-terminal and C-terminal
domains of a kinase in a widely used terminology. The ‘gate keeper’ is the main
residue determining the selectivity of ATP site directed kinase inhibitors. It is
named like this because it controls the access to the hydrophobic back pocket
of the ATP binding site. It is located at the beginning of the hinge segment. See
for instance: Furet, P.; Bold, G.; Meyer, Thomas; Roesel, J.; Guagnano, V. J. Med.
Chem. 2006, 49, 4451.
11. In the first prototype compound, a simple phenyl ring was envisaged at
position 7, the nitrogen atom of the pyridine ring of 1 showing no particular
interaction with the cavity in the docking model.
series of potent JAK2 inhibitors that was subsequently optimized
towards compounds suitable for in vivo efficacy evaluation.7
The two examples presented here illustrate the efficiency of
innovative scaffold morphing to generate new useful chemotypes
in the very competitive field of kinase inhibitor research. In partic-
ular, our work gives support to the notion that a pseudo hydrogen
bond formed between an inhibitor aromatic C–H group and one of
the backbone amide carbonyl groups of the hinge segment is a
favorable interaction to seek in kinase inhibitor design.
Supplementary data
Supplementary data associated with this article can be found, in
12. For a detailed description of the biochemical assays see: Gerspacher, M.; Furet,
P.; Vangrevelinghe, E.; Pissot Soldermann, C.; Gaul, C.; Holzer, P. PCT Int. Appl.
WO 2008148867, 2008; Chem. Abstr. 2008, 150, 56197.
13. Taylor, R.; Kennard, O. J. Am. Chem . Soc. 1982, 104, 5063.
14. Desiraju, G. R. Acc. Chem. Res. 1996, 29, 441.
References and notes
1. For recent reviews see: (a) Atallah, E.; Verstovsek, S. Exp. Rev. Antican. Ther.
2009, 9, 663; (b) Pardanani, A. Leukemia 2008, 22, 23; (c) Levine, R. L.;
Pardanani, A.; Tefferi, A.; Gilliland, D. G. Nat. Rev. Cancer 2007, 7, 673.
2. Antonysamy, S.; Hirst, G.; Park, F.; Sprengeler, P.; Stappenbeck, F.; Steensma, R.;
Wilson, M.; Wong, M. Bioorg. Med. Chem. Lett. 2009, 19, 279.
15. Pierce, A. C.; Sandretto, K. L.; Bemis, G. W. Protein: Struct. Funct. Genet. 2002, 49,
567.
16. In our model, the designed C–HÁÁÁO interaction had the attributes of a H-bond
(see Ref. 13): a distance between the proton and the acceptor oxygen atom of
2.3 Å which is significantly less than the sum of the van der Waals radii (2.7 Å),
an angle C–HÁÁÁO of 140° approaching the ideal value of 180° (linearity) and an
elevation angle of 30° approaching the ideal value of 0° indicating the tendency
of the HÁÁÁO contact to lie in the plane containing the oxygen lone pairs. A
crystal structure of compound 4 in complex with the kinase domain of JAK2
was subsequently solved (Ref. 7). It fully confirmed the validity of the design
concept. In this structure a C–HÁÁÁO pseudo hydrogen bond is observed between
the C–H group in position 3 of the quinoxaline ring and the backbone carbonyl
oxygen atom of residue L932. The geometric parameters of this hydrogen bond
are the following: distance proton-oxygen of 2.34 Å, angle C–HÁÁÁO of 132° and
elevation angle of 40.4°.
3. Burns, C. J.; Bourke, D. G.; Andrau, L.; Bu, X.; Charman, S. A.; Donohue, A. C.;
Fantino, E.; Farrugia, M.; Feutrill, J. T.; Joffe, M.; Kling, M. R.; Kurek, M.; Nero, T.
L.; Nguyen, T.; Palmer, J. T.; Phillips, I.; Shackleford, D. M.; Sikanyika, H.; Styles,
M.; Su, S.; Treutlein, H.; Zeng, J.; Wilks, A. F. Bioorg. Med. Chem. Lett. 2009, 19,
5887.
4. Kiss, R.; Polgar, T.; Kirabo, A.; Sayyah, J.; Figueroa, N. C.; List, Al. F.; Sokol, L.;
Zuckerman, K. S.; Gali, M.; Bisht, K. S.; Sayeski, P. P.; Keseru, G. M. Bioorg. Med.
Chem. Lett. 2009, 19, 3598.
5. Choi, H-S.; Wang, Z.; Richmond, W.; He, X.; Yang, K.; Jiang, T.; Karanewsky, D.;
Gu, X-J.; Zhou, V.; Liu, Y.; Che, J.; Lee, C. C.; Caldwell, J.; Kanazawa, T.;
Umemura, I.; Matsuura, N.; Ohmori, O.; Honda, T.; Gray, N.; He, Y. Bioorg. Med.
Chem. Lett. 2006, 16, 2689.