SCHEME 1. Copper/Silver-Cocatalyzed Conia-Ene
Reaction of Linear ꢀ-Alkynic ꢀ-Ketoesters
Copper/Silver-Cocatalyzed Conia-Ene Reactions
of 2-Alkynic 1,3-Dicarbonyl Compounds
Chen-Liang Deng,† Tao Zou,‡ Zhi-Qiang Wang,†
Ren-Jie Song,† and Jin-Heng Li*,†,‡
Key Laboratory of Chemical Biology & Traditional Chinese
Medicine Research (Ministry of Education), Hunan Normal
UniVersity, Changsha 410081, China, and College of
Chemistry and Materials Science, Wenzhou UniVersity,
Wenzhou 325035, China
cyclization2 and transition-metal-catalyzed cyclization.3-7 How-
ever, the former suffers from the requirement of high temper-
atures, which significantly limits its application in organic
synthesis. The latter transformation could be conducted smoothly
at lower temperature, but additives, such as strong base,3 strong
acid,4 and photochemical activation (often UV irradiation), are
often needed.5 Balme and co-workers, for instance, have
reported the CuI-catalyzed Conia-ene reactions of R-alkynic
ꢀ-ketoesters under mild conditions in the presence of a strong
base, t-BuOK.3 As a result, much recent attention has been
attracted on the development of mild and neutral conditions for
the Conia-ene reaction.6-8 These efficiently catalytic systems
include Au/Ag,6 Ni(acac)2/Yb(OTf)3,7 and In(NTf2)3.8 Recently,
we also developed a mild and effective protocol for the
Conia-ene reactions of linear ꢀ-alkynic ꢀ-ketoesters using
(CuOTf)2 ·C6H6 and Ag(I) (AgSbF6or AgOAc) catalytic system
(Scheme 1).9 In the presence of (CuOTf)2 ·C6H6 and Ag(I)
(AgSbF6or AgOAc), a variety of linear ꢀ-alkynic ꢀ-ketoesters
underwent the Conia-ene intramolecular reaction smoothly to
selectively afforded the corresponding exo- or endo-products
in moderate to good yields. Encouraged by the results, we
decided to apply the Cu/Ag catalytic system in the cyclization
of R-alkynic ꢀ-ketoesters. To our delight, the Cu/Ag catalytic
system also displayed high efficiency for a wide range of
2-alkynic 1,3-dicabonyl compounds including R-alkynic ꢀ-ke-
toesters, R-alkynic ꢀ-diketo, 2-phenylacetylhept-6-ynenitrile, and
diethyl 2-(pent-4-ynyl)malonate. Herein, we wish to report a
general and selective protocol for the synthesis of exo- and endo-
products by copper/silver-cocatalyzed Conia-ene reactions of
2-alkynic 1,3-dicabonyl compounds (Scheme 2).
ReceiVed September 24, 2008
A copper/silver-catalyzed Conia-ene reaction has been
developed for selectively constructing five-membered and
six-membered rings. In the presence of (CuOTf)2 · C6H6 and
AgBF4, a variety of 2-alkynic 1,3-dicarbonyl compounds
underwent the Conia-ene intramolecular reaction smoothly
in moderate to good yields. It is noteworthy that both
2-phenylacetylhept-6-ynenitrile and diethyl 2-(pent-4-ynyl)-
malonate are also suitable substrates under the standard
conditions, and the selectivity toward endo- or exo-products
depends on the substitutents at the terminal of alkynes.
Methyl 2-acetylhept-6-ynoate (1a) was chosen as a model to
screen the optimal reaction conditions, and the results are
summarized in Table 1. Without Ag salts, treatment of substrate
1a with (CuOTf)2 ·C6H6 afforded only moderate yield of the
The intramolecular ene reaction of unsaturated ketones and
aldehydes (the Conia-ene reaction) has emerged as a powerful
method for carbon-carbon bond formation.1-7 The reaction
generally proceeds via two common transformations, thermal
(4) Hg: (a) Boaventura, M. A.; Drouin, J.; Conia, J. M. Synthesis 1983, 801.
(b) Boaventura, M.-A.; Drouin, J Synth. Commun. 1987, 17, 975. Co: (c) Cruciani,
P.; Aubert, C.; Malacria, M. Tetrahedron Lett. 1994, 35, 6677. (d) Cruciani, P.;
Stammler, R.; Aubert, C.; Malacria, M. J. Org. Chem. 1996, 61, 2699. (e) Renaud,
J.-L.; Petit, M.; Aubert, C.; Malacria, M. Synlett 1997, 931. (f) Renaud, J.-L.;
Aubert, C.; Malacria, M. Tetrahedron 1999, 55, 5113. Au: (g) Corkey, B. K.;
Toste, F. D. J. Am. Chem. Soc. 2005, 127, 17168.
† Hunan Normal University.
‡ Wenzhou University.
(1) Caine, D. In ComprehensiVe Organic Synthesis; Trost, B. M., Fleming,
I., Eds.; Pergamon Press: New York, 1991; Vol. 3, pp 1-63.
(2) For a review, see: Le Conia, J. M.; Perchec, P. Synthesis 1975, 1.
(3) Pd: (a) Fournet, G.; Balme, G.; Van Hemelryck, B.; Gore, J. Tetrahedron
Lett. 1990, 31, 5147. (b) Fournet, G.; Balme, G.; Gore, J. Tetrahedron 1991,
47, 6293. (c) Bouyssi, D.; Balme, G.; Gore, J. Tetrahedron Lett. 1991, 32, 6541.
(d) Balme, G.; Bouyssi, D.; Faure, R.; Gore, J.; Van Hemelryck, B. Tetrahedron
1992, 48, 3891. (e) Monteiro, N.; Gore, J.; Balme, G. Tetrahedron 1992, 48,
10103. Mo: (f) McDonald, F. E.; Olson, T. C. Tetrahedron Lett. 1997, 38, 7691.
Cu: (g) Bouyssi, D.; Monteiro, N.; Balme, G. Tetrahedron Lett. 1999, 40, 1297.
(h) Perez-Hernandez, N.; Febles, M.; Perez, C.; Perez, R.; Rodriguez, M. L.;
Foces-Foces, C.; Martin, J. D. J. Org. Chem. 2006, 71, 1139. Ti: (i) Kitagawa,
O.; Suzuki, T.; Inoue, T.; Watanabe, Y.; Taguchi, T. J. Org. Chem. 1998, 63,
9470.
(5) (a) Stammler, R.; Malacria, M. Synlett 1994, 92. (b) Cruciani, P.;
Stammler, R.; Aubert, C.; Malacria, M. J. Org. Chem. 1996, 61, 2699. (c) Renaud,
J.-L.; Aubert, C.; Malacria, M. Tetrahedron 1999, 55, 5113.
(6) (a) Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc.
2004, 126, 4526. (b) Staben, S. T.; Kennedy-Smith, J. J.; Toste, F. D. Angew.
Chem., Int. Ed. 2004, 43, 5350. (c) Mezailles, N.; Ricard, L.; Gagosz, F. Org.
Lett. 2005, 7, 4133. (d) Ochida, A.; Ito, H.; Sawamura, M. J. Am. Chem. Soc.
2006, 128, 16486. (e) Pan, J.-H.; Yang, M.; Gao, Q.; Zhu, N.-Y.; Yang, D.
Synthesis 2007, 2539.
(7) Gao, Q.; Zheng, B.-F.; Li, J.-H.; Yang, D. Org. Lett. 2005, 7, 2185.
(8) Tsuji, H.; Yamagata, K.-i.; Itoh, Y.; Endo, K.; Nakamura, M.; Nakamura,
E. Angew. Chem., Int. Ed. 2007, 46, 8060.
(9) Deng, C.-L.; Song, R.-J.; Guo, S.-M.; Wang, Z.-Q.; Li, J.-H. Org. Lett.
2007, 9, 5111.
412 J. Org. Chem. 2009, 74, 412–414
10.1021/jo802133w CCC: $40.75 2009 American Chemical Society
Published on Web 11/18/2008