Journal of the American Chemical Society
Communication
(6) (a) Komanduri, V.; Grant, C. D.; Krische, M. J. J. Am. Chem. Soc.
2008, 130, 12592. (b) Saxena, A.; Choi, B.; Lam, H. W. J. Am. Chem.
Soc. 2012, 134, 8428.
(7) Komanduri, V.; Krische, M. J. J. Am. Chem. Soc. 2006, 128, 16448.
(8) (a) Leung, J. C.; Geary, L. M.; Chen, T.-Y.; Zbieg, J. R.; Krische,
M. J. J. Am. Chem. Soc. 2012, 134, 15700. (b) Chen, T.-Y.; Krische, M.
J. Org. Lett. 2013, 15, 2994. (c) Geary, L. M.; Glasspoole, B. W.; Kim,
M. M.; Krische, M. J. J. Am. Chem. Soc. 2013, 135, 3796.
(9) Recent reviews on C-C bond forming hydrogenation and transfer
hydrogenation: (a) Hassan, A.; Krische, M. J. Org. Proc. Res. Devel.
2011, 15, 1236. (b) Moran, J.; Krische, M. J. Pure Appl. Chem. 2012,
84, 1729.
(10) Exposure of Ru3(CO)12 to dppe in benzene solvent provides
Ru(CO)3(dppe): Sanchez-Delgado, R. A.; Bradley, J. S.; Wilkinson, G.
J. Chem. Soc., Dalton Trans. 1976, 399.
(11) (a) Blum, Y.; Reshef, D.; Shvo, Y. Tetrahedron Lett. 1981, 22,
1541. (b) Shvo, Y.; Blum, Y.; Reshef, D.; Menzin, M. J. Organomet.
Chem. 1982, 226, C21. (c) Meijer, R. H.; Ligthart, G. B. W. L.;
Meuldijkb, J.; Vekemans, J. A. J. M.; Hulshof, L. A.; Mills, A. M.;
Kooijmanc, H.; Spek, A. L. Tetrahedron 2004, 60, 1065.
(12) Johnson, T. C.; Totty, W. G.; Wills, M. Org. Lett. 2012, 14,
5230.
further conversion was observed suggesting equilibrium was
established. These data suggest that the development of
enantioselective variants of this process may require especially
high kinetic stereoselectivities to offset erosion of enantiomeric
excess stemming from reversible C-C bond formation. Studies
aimed at probing this question are ongoing and will be reported
in due course.
In summary, we report the ruthenium(0) catalyzed hydro-
hydroxyalkylation of dienes with heteroaryl substituted
secondary alcohols. This process enables direct conversion of
secondary to tertiary alcohols in the absence of stoichiometric
byproducts or premetalated reagents. The oxaruthenacycle
postulated as a key intermediate has, for the first time, been
isolated and characterized. Furthermore, its reversible for-
mation has been demonstrated through exchange experiments.
These studies provide deeper insight into the structural-
interactional features of the catalytic system, which will
accelerate the development of improved catalysts for the
hydrohydroxyalkylation of π-unsaturated reactants with alco-
hols.
(13) (a) Baehn, S.; Tillack, A.; Imm, S.; Mevius, K.; Michalik, D.;
Hollmann, D.; Neubert, L.; Beller, M. ChemSusChem 2009, 2, 551.
(b) Pingen, D.; Muller, C.; Vogt, D. Angew. Chem., Int. Ed. 2010, 49,
̈
8130. (c) Zhang, M.; Imm, S.; Bahn, S.; Neumann, H.; Beller, M.
Angew. Chem., Int. Ed. 2011, 50, 11197.
(14) Oxidative coupling occurs reversibly in stoichiometric reactions
of nickel(0) with dienes and aldehydes to provide isolable π-
allylalkoxynickel(II) complexes that have been characterized by single
crystal X-ray diffraction analysis: Ogoshi, S.; Tonomori, K.-i.; Oka, M.-
a.; Kurosawa, H. J. Am. Chem. Soc. 2006, 128, 7077.
ASSOCIATED CONTENT
* Supporting Information
Experimental details and spectral data. This material is available
(15) (a) Chatani, N.; Tobisu, M.; Asaumi, T.; Fukumoto, Y.; Murai,
S. J. Am. Chem. Soc. 1999, 121, 7160. (b) Tobisu, M.; Chatani, N.;
Asaumi, T.; Amako, K.; Ie, Y.; Fukumoto, Y.; Murai, S. J. Am. Chem.
Soc. 2000, 122, 12663.
(16) Under standard conditions, the 3- and 4-substituted constitu-
tional isomers of phenyl-(2-pyridyl)-methanol 1a dehydrogenate but
do not participate in C-C coupling, suggesting that chelation, which
amplifies the LUMO lowering effect of the pyridine, is a prerequisite to
C-C coupling in transformations of this type.
■
S
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The Robert A. Welch Foundation (F-0038) and the NIH-
NIGMS (RO1-GM069445) are acknowledged for partial
support of this research.
REFERENCES
■
(1) For an excellent review, see: Carey, J. S.; Laffan, D.; Thomson,
C.; Williams, M. T. Org. Biomol. Chem. 2006, 4, 2337.
(2) Bonnet, V.; Mongin, F.; Trec
́
ourt, F.; Breton, G.; Marsais, F.;
Knochel, P.; Queguiner, G. Synlett 2002, 1008.
́
(3) For selected reviews, see: (a) Campeau, L.-C.; Fagnou, K. Chem.
Soc. Rev. 2007, 36, 1058. (b) Ackermann, L.; Vicente, R.; Kapdi, A. R.
Angew. Chem., Int. Ed. 2009, 48, 9792. (c) Rossi, R.; Bellina, F.; Lessi,
M. Synthesis 2010, 4131. (d) Cho, S. H.; Kim, J. Y.; Kwak, J.; Chang, S.
Chem. Soc. Rev. 2011, 40, 5068.
(4) (a) Lautens, M.; Roy, A.; Fukuoka, K.; Fagnou, K.; Martín-
Matute, B. J. Am. Chem. Soc. 2001, 123, 5358. (b) Amengual, R.;
Michelet, V.; Genet, J.-P. Tetrahedron Lett. 2002, 43, 5905. (c) Pattison,
̂
G.; Piraux, G.; Lam, H. W. J. Am. Chem. Soc. 2010, 132, 14373.
(d) Roscales, S.; Salado, I. G.; Csaky, A. G. Synlett 2011, 2234.
(5) (a) Lautens, M.; Yoshida, M. Org. Lett. 2002, 4, 123. (b) Lautens,
M.; Yoshida, M. J. Org. Chem. 2003, 68, 762. (c) Genin, E.; Michelet,
V.; Genet
Michelet, V.; Genet
̂
, J.-P. Tetrahedron Lett. 2004, 45, 4157. (d) Genin, E.;
̂
, J.-P. J. Organomet. Chem. 2004, 23, 3820.
D
dx.doi.org/10.1021/ja4087193 | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX