lective methods to prepare this kind of compounds have not
been described.
Enantioselective Organocatalytic Approach to the
Synthesis of r,r-Disubstituted Cyanosulfones
During the past few years, asymmetric organocatalysis has
emerged as a powerful strategy in organic synthesis.6 In this
field, Michael addition has been extensively studied as one of
the most versatile strategies in C-C bond formation.7 In
particular, when cinchona alkaloids are used as chiral bases,
R-substituted dicarbonylic compounds8 and cyanoesters9 are
mainly employed as the nucleophiles due to the strong acidity
of their methylene protons. This strategy has allowed the
formation of all-carbon quaternary stereocenters.10
M. Bele´n Cid,* Jesu´s Lo´pez-Cantarero, Sara Duce, and
Jose´ Luis Garc´ıa Ruano*
Departamento de Qu´ımica Orga´nica, UniVersidad Auto´noma
de Madrid, Cantoblanco, 28049-Madrid, Spain
belen.cid@uam.es; joseluis.garcia.ruano@uam.es
ReceiVed September 11, 2008
At this point, we envisioned that R-cyanosulfones would be
suitable starting materials to prepare enantioenriched tert-alkyl
sulfones by using a similar strategy. In this paper, we describe
the results obtained in the Michael addition of R-substituted
R-cyanosulfones to R,ꢀ-unsaturated ketones catalyzed by cin-
chona alkaloids.11 It is noteworthy that, in contrast with the wide
use of vinyl sulfones as electrophiles in asymmetric organoca-
talysis,12 there are few examples where R-sulfonyl carbanions
have been used as nucleophiles,13 in spite of the high acidity
of the sulfonylated compounds and the large chemical versatility
of the sulfones.
Optically pure cyano tert-alkyl sulfones have been obtained
by organocatalytic enantioselective Michael addition of
R-substituted cyanosulfones to vinyl ketones using cinchona
alkaloids as catalysts. The best results were obtained for
p-trifluorophenylsulfones by using VIII as catalyst in toluene
at -40 °C. Reactions proved to be applicable for a variety
of R,ꢀ-unsaturated ketones, affording R,R-disubstituted cy-
anosulfones in excellent yields with er’s up to 90:10.
We first tried the efficiency of a variety of cinchona alkaloids
(Figure 1) as catalysts to promote the enantioselective Michael
addition of R-phenyl-R-cyano-p-tolylsulfone 1a14 to the com-
mercially available methyl vinyl ketone (MVK) 2a (Table 1).
(6) (a) Dondoni, A.; Massi, A. Angew. Chem., Int. Ed. 2008, 47, 4638. (b)
Pellissier, H. Tetrahedron 2007, 63, 9267. (c) Dalko, P. I.; Moisan, L. Angew.
Chem., Int. Ed. 2004, 43, 5138. (d) Berkessel, A.; Gro¨ger, H. Asymmetric
Organocatalysis; Wiley-VCH: Weinheim, Germany, 2005. (e) Seayad, J.; List,
B. Org. Biomol. Chem. 2005, 3, 719. (f) List, B. Chem. Commun. 2006, 819.
(g) Marion, N.; D´ıez-Gonzalez, S.; Nolan, S. P. Angew. Chem., Int. Ed. 2007,
46, 2988. (h) Xu, L.-W.; Lu, Y. Org. Biomol. Chem. 2008, 6, 2047. (i) Bartoli,
G.; Melchiorre, P. Synlett 2008, 1759. (j) Connon, S. J. Chem. Commun. 2008,
2499.
(7) For reviews on organocatalytic enanatioselective Michael reactions, see:
(a) Almasi, D.; Alonso, D. A.; Na´jera, C. Tetrahedron: Asymmetry 2007, 18,
299. (b) Tsogoeva, S. B. Eur. J. Org. Chem. 2007, 1701. (c) Vicario, J. L.;
Bad´ıa, D.; Carrillo, L. Synthesis 2007, 14, 2065.
(8) (a) Wynberg, H.; Helder, R. Tetrahedron Lett. 1975, 46, 4057. (b) Ooi,
T.; Miki, T.; Taniguchi, M.; Shiraishi, M.; Takeuchi, M.; Maruoka, K. Angew.
Chem., Int. Ed. 2003, 42, 3796. (c) Bella, M.; Jørgensen, K. A. J. Am. Chem.
Soc. 2004, 126, 5672. (d) Li, H.; Wang, Y.; Tang, L.; Wu, F.; Liu, X.; Guo, C.;
Foxman, B. M.; Deng, L. Angew. Chem., Int. Ed. 2005, 44, 105. (e) Wu, F.; Li,
H.; Hong, R.; Deng, L. Angew. Chem., Int. Ed. 2006, 45, 947. (f) Elsner, P.;
Bernardi, L.; Dela Salla, G.; Overgaard, J.; Jørgensen, K. A. J. Am. Chem. Soc.
2008, 130, 4897.
Sulfones are gaining an increasing importance in medicinal
chemistry since they are considered as mimics of the carbonyl
moieties in the transition state.1 According to the World Drug
Index, there are more than 40 sulfonyl-containing structures
internationally recognized as drugs for a great variety of illness.2
Chiral sulfonyl compounds have shown interesting activities in
diseases such as glaucoma3 or Alzheimer’s.4 A significant
number of functionalized tert-alkyl sulfones4,5 have been
recently recognized as new chemical entities with a wide range
of biological activities. However, to our knowledge, enantiose-
(9) See, for example: (a) Liu, T.-Y.; Li, R.; Chai, Q.; Long, J.; Li, B.-J.;
Wu, Y.; Ding, L.-S.; Chen, Y.-C. Chem.sEur. J. 2007, 13, 319. (b) Wu, F.; Li,
H.; Hong, R.; Deng, L. Angew. Chem., Int. Ed 2006, 45, 947. For other uses of
cyanoacetates, see: (c) Poulsen, T. B.; Alemparte, C.; Saaby, S.; Bella, M.;
Jørgensen, K. A. Angew. Chem., Int. Ed. 2005, 44, 2896. (d) Lo´pez-Cantarero,
J.; Cid, M. B.; Poulsen, T. B.; Bella, M.; Garc´ıa Ruano, J. L.; Jørgensen, K. A.
J. Org. Chem. 2007, 72, 7062.
(10) For construction of all-carbon quaternary stereocenters, see: (a) Douglas,
C. J.; Overman, L. E. Proc. Nat. Acad. Sci. U.S.A. 2004, 101, 5363. (b)
Christoffers, J.; Baro, A. Angew. Chem., Int. Ed. 2003, 42, 1688. (c) Corey,
E. J.; Guzman-Pe´rez, A. Angew. Chem., Int. Ed. 1998, 37, 389.
(11) For an example of cyanosulfones with biological activity see: Miyazaki,
H. PCT Int. Appl. WO 2007060839, 2007.
(12) Carretero, J. C.; Arraya´s R. G.; Adrio, J. In Sulfones in Asymmetric
Catalysis (chapter 9) in Organosulfur Chemistry in Asymmetric Synthesis, 1st
ed.; Toru, T., Bolm, C., Eds.; Wiley-VCH: Weinheim, 2008.
(1) See, for example: (a) Lovejoy, B.; Welch, A. R.; Carr, S.; Luong, C.;
Broka, C.; Hendricks, R. T.; Campbell, J. A.; Walker, K. A. M.; Martin, R.;
Van Wart, H.; Browner, M. F. Nat. Struct. Biol. 1999, 6, 217.
(2) Sulfonamides are not included in this number.
(3) Surgrue, M. F.; Harris, A.; Adamsoms, I. Drugs Today 1997, 33, 283.
(4) Scott, J. P.; Lieberman, D. R.; Beureux, O. M.; Brands, K. M. J.; Davies,
A. J.; Gibson, A. W.; Hammond, D. C.; Chris, J.; McWilliams, C. J.; Stewart,
G. W.; Wilson, R. D.; Dolling, U.-H. J. Org. Chem. 2007, 72, 4149, and
references cited therein.
(5) For some recent examples, see: (a) Churcher, I.; Harrison, T.; Kerrad,
S.; Oakley, P. J.; Shaw, D. E.; Teall, M. R.; Williams, S. PCT Int. Appl. WO
2004031137, 2004. (b) Aranapakam, V.; Grosu, G. T.; Davis, J. M.; Hu, B.;
Ellingboe, J.; Baker, J. L.; Skotnicki, J. S.; Zask, A.; DiJoseph, J. F.; Sung, A.;
Sharr, M. A.; Killar, L. M.; Walter, T.; Jin, G.; Cowling, R. J. Med. Chem.
2003, 46, 2361. (c) Berry, A.; Cirillo, P. F.; Hickey, E. R.; Riether, D.; Thomson,
D. S.; Ermann, M.; Jenkins, J. E.; Mushi, I.; Taylor, M.; Chowdhury, C.; Palmer,
C. F.; Blumire, N. PCT Int. Appl. WO 2008014199, 2008. (d) Fernández, M.;
Caballero, J. Bioorg. Med. Chem. 2007, 15, 6298. (e) Miyazaki, H. PCT Int.
Appl. WO 2007060839, 2007.
(13) (a) Mizuta, S.; Shibata, N.; Goto, Y.; Furukawa, T.; Nakamura, S.; Toru,
T. J. Am. Chem. Soc. 2007, 129, 6394. (b) Arai, S.; Ishida, T.; Shiroi, T.
Tetrahedron Lett. 1998, 39, 8299. (c) Pulkkinen, J.; Aburel, P. S.; Halland, N.;
Jørgensen, K. A. AdV. Synth. Catal. 2004, 346, 1077.
10.1021/jo801968p CCC: $40.75
Published on Web 11/20/2008
2009 American Chemical Society
J. Org. Chem. 2009, 74, 431–434 431