step redox systems of theoretical and practical interests3 and
their utility in the synthesis of cyclophanes4 or as axially chiral
ligands.5
Synthesis of Biindolizines through Highly
Regioselective Palladium-Catalyzed C-H
Functionalization
Historically, construction of biindolizine systems commonly
involves the utilization of dehydrogenating agents, such as
palladium on carbon, platinum on carbon, and potassium
ferricyanide, or through an electrochemical route.6 However,
the substrate scope is rather limited under these reaction
conditions, and only electron-rich substrates work well. Re-
cently, Pd(II) salts were found to catalyze the oxidative
homocoupling reaction of benzene, thiophene, and arylpyridine
derivatives7 through a C-H functionalization.8 In addition, the
cross-coupling reactions of arenes or heteroarenes were also
achieved through double C-H functionalization process.9
However, the utility of these transformations is rather limited
mainly due to the low reactivity, poor yields and unsatisfactory
selectivity. Recently, there are significant examples reported
where a directing group has to be used for good selectivity and
yields.7b,c,9b,e-g As part of our continuing efforts to develop
efficient carbon-carbon formation processes via double C-H
functionalization,9d herein we report a palladium-catalyzed
highly regioselective oxidative coupling reaction under mild
conditions for the synthesis of biindolizines through C-H
functionalization. This represents a rare example in that excellent
yields and regioselectivity are obtained for a transition-metal-
catalyzed double C-H functionalization process without the use
of a directing group.
Ji-Bao Xia, Xue-Qiang Wang, and Shu-Li You*
State Key Laboratory of Organometallic Chemistry,
Shanghai Institute of Organic Chemistry, Chinese Academy
of Sciences, 354 Fenglin Lu, Shanghai 200032, China
ReceiVed October 6, 2008
Biindolizines were synthesized under mild conditions with
excellent regioselectivity in high yields through palladium-
catalyzed C-H functionalization of indolizines. Synthesis
of a macrocyclic compound was also achieved via intramo-
lecular double C-H functionalization.
In our initial study, the oxidative coupling of the ester group
bearing indolizine 1a was performed in mesitylene at 150 °C
with 10 mol% of Pd(TFA)2, 2 equiv of Cu(OAc)2, and 2 equiv
Indolizines are important N-fused heterocycles broadly found
in biologically important natural products and synthetic phar-
maceuticals.1 Accordingly, synthesis and functionalization of
indolizines have attracted considerable attention for several
decades.2 However, biindolizines have so far received relatively
little attention despite their being rather stable, reversible two-
(3) Hu¨nig, S.; Linhart, F. Liebigs Ann. Chem. 1976, 317.
(4) (a) Kreher, T.; Sonnenschein, H.; Costisella, B.; Schneider, M. J. Chem.
Soc. Perkin Trans. 1 1997, 3451. (b) Leitner, M. B.; Kreher, T.; Sonnenschein,
H.; Costisella, B.; Springer, J. J. Chem. Soc., Perkin Trans. 2 1997, 377.
(5) (a) Sonnenshein, H.; Kreher, T.; Gru¨ndemann, E.; Kru¨ger, R.-P.; Kunath,
A.; Zabel, V. J. Org. Chem. 1996, 61, 710. (b) Sonnenschein, H.; Theil, F.;
Kreher, T.; Ko¨ckritz, A. Chem. Commun. 1997, 551. (c) Ko¨ckritz, A.;
Sonnenschein, H.; Bischoff, S.; Theil, F.; Gloede, J. Phosphorus, Sulfur Silicon
Relat. Elem. 1998, 132, 15.
(6) (a) Kakehi, A.; Ito, S.; Hamaguchi, A.; Okano, T. Bull. Chem. Soc. Jpn.
1981, 54, 2833. (b) Kreher, T.; Sonnenschein, H.; Schmidt, L.; Hu¨nig, S. Liebigs
Ann. Chem. 1994, 1173. (c) Sonnenschein, H.; Kosslick, H.; Tittelbach, F.
Synthesis 1998, 1596. (d) Hu¨nig, S.; Linhart, F. Tetrahedron Lett. 1971, 12,
1273. (e) Andruzzi, R.; Cardellini, L.; Greci, L.; Stipa, P.; Poloni, M.; Trazza,
A. J. Chem. Soc., Perkin Trans. 1 1988, 3067. (f) Cardellini, L.; Carloni, P.;
Greci, L.; Tosi, G.; Andruzzi, R.; Marrosu, G.; Trazza, A. J. Chem. Soc., Perkin
Trans. 2 1990, 2117.
(7) (a) Burton, H. A.; Kozhevnikov, I. V. J. Mol. Catal. A 2002, 185, 285.
(b) Takahashi, M.; Masui, K.; Sekiguchi, H.; Kobayashi, N.; Mori, A.; Funahashi,
M.; Tamaoki, N. J. Am. Chem. Soc. 2006, 128, 10930. (c) Hull, K. L.; Lanni,
E. L.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 14047.
(8) For reviews: (a) Yu, J.-Q.; Giri, R.; Chen, X. Org. Biomol. Chem 2006,
4, 4041. (b) Campeau, L.-C.; Fagnou, K. Chem. Commun. 2006, 1253. (c) Dick,
A. R.; Sanford, M. S. Tetrahedron 2006, 62, 2439. (d) Daugulis, O.; Zaitsev,
V. G.; Shabashov, D.; Pham, Q.-N.; Lazareva, A. Synlett 2006, 3382. (e) Alberico,
D.; Scott, M. E.; Lautens, M. Chem. ReV. 2007, 107, 174. (f) Seregin, I. V.;
Gevorgyan, V. Chem. Soc. ReV. 2007, 36, 1173. (g) Li, B.-J.; Yang, S.-D.; Shi,
Z.-J. Synlett 2008, 949.
(9) (a) Li, R.; Jiang, L.; Lu, W. Organometallics 2006, 25, 5973. (b) Stuart,
D. R.; Fagnou, K. Science 2007, 316, 1172. (c) Dwight, T. A.; Rue, N. R.;
Charyk, D.; Josselyn, R.; DeBoef, B. Org. Lett. 2007, 9, 3137. (d) Xia, J.-B.;
You, S.-L. Organometallics 2007, 26, 4869. (e) Hull, K. L.; Sanford, M. S.
J. Am. Chem. Soc. 2007, 129, 11904. (f) Stuart, D. R.; Villemure, E.; Fagnou,
K. J. Am. Chem. Soc. 2007, 129, 12072. (g) Li, B.-J.; Tian, S.-L.; Fang, Z.; Shi,
Z.-J. Angew. Chem., Int. Ed. 2008, 47, 1115. (h) Brasche, G.; Garca-Fortanet,
J.; Buchwald, S. L. Org. Lett. 2008, 10, 2207.
(1) For reviews: (a) Michael, J. P. Nat. Prod. Rep. 2002, 19, 742. (b) Michael,
J. P. Alkaloids 2001, 55, 91. For selected examples: (c) Beck, E. M.; Hatley, R.;
Gaunt, M. J. Angew. Chem., Int. Ed. 2008, 47, 3004. (d) Millet, R.; Domarkas,
J.; Rigo, B.; Goossens, L.; Goossens, J.-F.; Houssin, R.; He´nichart, J.-P. Bioorg.
Med. Chem. 2002, 10, 2905. (e) Hagishita, S.; Yamada, M.; Shirahase, K.; Okada,
T.; Murakami, Y.; Ito, Y.; Matsuura, T.; Wada, M.; Kato, T.; Ueno, M.;
Chikazawa, Y.; Yamada, K.; Ono, T.; Teshirogi, I.; Ohtani, M. J. Med. Chem.
1996, 39, 3636. (f) Molyneux, R. J.; James, L. F. Science 1982, 216, 190.
(2) For reviews: (a) Uchida, T.; Matsumoto, K. Synthesis 1976, 209. (b)
Behnisch, A.; Behnisch, P.; Eggenweiler, M.; Wallenhorst, T. Indolizine. In
Houben-Weyl; Thieme Chemistry: New York, 1994; 323-450. For recent
examples: (c) Niyomura, O.; Yamaguchi, Y.; Sakao, R.; Minoura, M.; Okamoto,
Y. Heterocycles 2008, 75, 297. (d) Seregin, I. V.; Ryabova, V.; Gevorgyan, V.
J. Am. Chem. Soc. 2007, 129, 7742. (e) Schwier, T.; Sromek, A. W.; Yap,
D. M. L.; Chernyak, D.; Gevorgyan, V. J. Am. Chem. Soc. 2007, 129, 9868. (f)
Seregin, I. V.; Schammel, A. W.; Gevorgyan, V. Org. Lett. 2007, 9, 3433. (g)
Yan, B.; Liu, Y. Org. Lett. 2007, 9, 4323. (h) Chuprakov, S.; Gevorgyan, V.
Org. Lett. 2007, 9, 4463. (i) Hardin, A. R.; Sarpong, R. Org. Lett. 2007, 9,
4547. (j) Yan, B.; Zhou, Y.; Zhang, H.; Chen, J.; Liu, Y. J. Org. Chem. 2007,
72, 7783. (k) Przewloka, T.; Chen, S.; Xia, Z.; Li, H.; Zhang, S.; Chimmanamada,
D.; Kostik, E.; James, D.; Koya, K.; Sun, L. Tetrahedron Lett. 2007, 48, 5739.
(l) Kim, I.; Choi, J.; Won, H. K.; Lee, G. H. Tetrahedron Lett. 2007, 48, 6863.
(m) Guazzelli, G.; Settambolo, R. Tetrahedron Lett. 2007, 48, 6034. (n)
Surpateanu, G. G.; Landy, D.; Lungu, N. C.; Fourmentin, S.; Surpateanu, G.
J. Heterocyclic Chem. 2007, 44, 783. (o) Shen, Y.-M.; Grampp, G.; Leesakul,
N.; Hu, H.-W.; Xu, J.-H. Eur. J. Org. Chem. 2007, 3718.
456 J. Org. Chem. 2009, 74, 456–458
10.1021/jo802227u CCC: $40.75 2009 American Chemical Society
Published on Web 11/18/2008