C O M M U N I C A T I O N S
noncovalent interactions such as H-bonding, solvophobic, and
electrostatic attraction. We believe that by employing signal
amplification these analyte-triggered gelations can be used in
chemical sensing. Our current efforts are focused on developing
methods for amplification using functionalized polymers.
Acknowledgment. We thank Dr. Jeff W. Kampf for performing
X-ray crystallography, Ms. Anna Merkle for assistance with NO,
and the University of Michigan for funding.
Supporting Information Available: Experimental details, spectro-
scopic data; X-ray crystallographic data in CIF format. This material
Figure 1. Scanning electron micrograph of the gel formed by 2 (26 mM)
in 1/1.25/3.75 of CH3CN/DMSO/H2O.
References
(1) (a) Molecular Gels: Materials with Self-Assembled Fibrillar Networks;
Weiss, R. G., Terech, P., Eds.; Springer: Dordrecht, The Netherlands, 2006.
(b) Low Molecular Mass Gelator; Topics in Current Chemistry, Vol. 256;
Springer: Berlin, Heidelberg, 2005. For recent reviews, see: (c) Sangeetha,
N. M.; Maitra, U. Chem. Soc. ReV. 2005, 34, 821–836. de Loos, M.; Feringa,
B. L.; van Esch, J. H. Eur. J. Org. Chem. 2005, 3615–3631. Estroff, L. A.;
Hamilton, A. D. Chem. ReV. 2004, 104, 1201–1218.
Figure 2. Adding an aqueous solution of CAN to 1 (26 mM, 4/1 DMSO/
H2O, left) produces 2 and gelation (2/1 DMSO/H2O, right).
(2) For a recent example, see: Tysseling-Mattiace, V. M.; Sahni, V.; Niece,
K. L.; Birch, D.; Czeisler, C.; Fehlings, M. G.; Stupp, S. I.; Kessler, J. A.
J. Neurosci. 2008, 28, 3814–3823. Silva, G. A.; Czeisler, C.; Niece, K. L.;
Beniash, E.; Harrington, D. A.; Kessler, J. A.; Stupp, S. I. Science 2004,
303, 1352–1355.
(3) For a recent review: Vintiloiu, A.; Leroux, J.-C. J. Controlled Release 2008,
125, 179–192.
(4) For recent examples, see: Yang, Z.; Ho, P.-L.; Liang, G.; Chow, K. H.;
Wang, Q.; Cao, Y.; Guo, Z.; Xu, B. J. Am. Chem. Soc. 2007, 129, 266–
267. Yang, Z.; Xu, B. Chem. Commun. 2004, 2424–2425.
(5) For a recent example, see: Bardelang, D.; Camerel, F.; Margeson, J. C.;
Leek, D. M.; Schmutz, M.; Zaman, M. B.; Yu, K.; Soldatov, D. V.; Ziessel,
R.; Ratcliffe, C. I.; Ripmeester, J. A. J. Am. Chem. Soc. 2008, 130, 3313–
3315.
(6) For example, an effect of the solvent chain length was reported to play an
unknown but measurable role in molecular self-assembly; Jonkheijm, P.;
van der Schoot, P.; Schenning, A. P. H. J.; Meijer, E. W. Science 2006,
313, 80–83.
Figure 3. Adding NO to a mixture of 1 in CH3CN (43 mM, upper left)
results in oxidation to 2 (upper right). Adding an aliquot of DMSO/H2O
results in a solution for 1 (lower left) and a gel for 2 (lower right).
(7) Hirst, A. R.; Coates, I. A.; Boucheteau, T. R.; Miravet, J. F.; Escuder, B.;
Castelletto, V.; Hamley, I. W.; Smith, D. K. J. Am. Chem. Soc. 2008, 130,
9113–9121.
90% conversion for various equivalents of NO. Comparing entries
1 and 4 reveal that although the reaction is catalytic in NO, the
reaction time is substantially slower at lower NO concentrations.
After oxidation a gel formed at room temperature when DMSO/
H2O was added. Control studies showed that the NO-induced
oxidation is essential to gel formation since an unexposed solution
of 1 does not form a gel upon identical treatment of DMSO/H2O
(Figure 3).
(8) For a recent review, see: Yang, Z.; Liang, G.; Xu, B. Acc. Chem. Res.
2008, 41, 315–326.
(9) For a recent example, see: Das, A. K.; Collins, R.; Ulijn, R. V. Small 2008,
4, 279–287.
(10) For a recent example, see: Shome, A.; Debnath, S.; Das, P. K. Langmuir
2008, 24, 4280–4288.
(11) For a recent example, see: Matsumoto, S.; Yamaguchi, S.; Ueno, S.;
Komatsu, H.; Ikeda, M.; Ishizuka, K.; Iko, Y.; Tabata, K. V.; Aoki, H.;
Ito, S.; Noji, H.; Hamachi, I. Chem.sEur. J. 2008, 14, 3977–3986.
(12) For a review of two-component gels, see: Hirst, A. R.; Smith, D. K.
Chem.sEur. J. 2005, 11, 5496–5508.
In summary, we invented a new analyte-triggered gelation by
employing a molecular design strategy based on a change in
intermolecular interactions. Specifically, an oxidation-induced pla-
narization with concomitant donor-acceptor interactions was shown
to trigger gel formation. Though the present case exploits π-stack-
ing, the general strategy of using an analyte to introduce gel-
promoting intermolecular interactions can be applied using other
(13) For related examples, see: (a) Zang, L.; Che, Y.; Moore, J. S. Acc. Chem.
Res. 2008, DOI: 10.1021/ar800030w. (b) Ajayaghosh, A.; Praveen, V. K.
Acc. Chem. Res. 2007, 40, 644–656. (c) Hoeben, F. J. M.; Jonkheijm, P.;
Meijer, E. W.; Schenning, A. P. H. J. Chem. ReV. 2005, 105, 1491–1546.
(14) For rheological measurements on these gels, see Supporting Information.
(15) For the role of the 2,6-dimethyl substituents in a related gelator, see:
Baddeley, C.; Yan, Z.; King, G.; Woodward, P. M.; Badjic´, J. D. J. Org.
Chem. 2007, 72, 7270–7278.
(16) X-ray crystal structure images were generated using ORTEP-3. H-atoms
were omitted for clarity.
(17) Pfister, J. R. Synthesis 1990, 689–690. See also: Nair, V.; Deepthi, A. Chem.
ReV. 2007, 107, 1862-1891.
Table 1. Time to 90% Conversion in the NO-Induced Oxidation of
1a
(18) Note that rapidly adding CAN in one aliquot lead to a precipitate.
(19) The equilibrium solubilities were measured by UV-vis spectroscopy in
2/1 DMSO/H2O at room temperature: 1 (0.29 ( 0.04 mg/mL) and 2 (0.61
( 0.07 mg/mL).
entry
equiv of NO
timeb (min)
1
2
3
4
0.25
0.50
1.0
2900
140
75
(20) Lim, K. G.; Mottram, C. Chest 2008, 133, 1232–1242.
(21) (a) Zhu, X.-Q.; Zhao, B.-J.; Cheng, J.-P. J. Org. Chem. 2000, 65, 8158–
8163. (b) Itoh, T.; Nagata, K.; Matsuya, Y.; Miyazaki, M.; Ohsawa, A. J.
Org. Chem. 1997, 62, 3582–3585.
10
<1
(22) (a) Shaw, A. W.; Vosper, A. J. J. Chem. Soc., Faraday Trans. 1 1977, 73,
1239–1244. (b) Dimethyl sulfoxide (DMSO) Solubility Data; Bulletin #102B;
Gaylord Chemical Company, L.L.C.: Slidell, LA, 2007.
a Reaction conditions: 13 mmol of 1 in 0.3 mL of CH3CN, 1 atm of
O2, rt. b Conversion was determined by HPLC analysis using an internal
standard.
JA807651A
9
J. AM. CHEM. SOC. VOL. 130, NO. 49, 2008 16497