Please do not adjust margins
New Journal of Chemistry
Page 9 of 11
Journal Name
DOI: 10.1039/C6NJ03763A
ARTICLE
Synthesis and characterization of Ionic liquids: ZILs were added dropwise to the vigorously stirred solution and refluxed for 2
synthesized using chemical reaction. For the synthesis of ZIL1, h. The nanoparticles formed were characterized by SEM, TEM, EDX,
benzimidazole (1 eq) andbromoacetic acid (2 eq) were dissolved in CV and DLS based methods. The precipitates obtained were filtered
acetonitrile. The pH was adjusted to 8 using sodium hydroxide and washed and dried at 80 oC under vacuum condition. The dried
refluxed for 6 h. After the completion of reaction pH was adjusted precipitates were further characterized using PXRD, solid state UV
to about 2-3 to separate product. Synthesis of ZIL2was done by and fluorescence spectroscopic methods.
refluxing 1-methyl imidazole (1 eq) and bromo acetic acid (1 eq) at
80 oC using acetonitrile as a solvent. ZIL3 was done using method
Synthesis and characterization of bis-coumarin derivatives:
Grinding beaker of 80ml with 45 balls(5 mm) were used to perform
the synthesis of bis-coumarin. The grinding beakers as well as balls
were made up of tungsten carbide. A concoction of 2 equivalents of
4-hydroxycoumerin, 1 equivalent of benzaldehyde derivatives and
similar to ZIL2 by using bromo-sulfonic acid instead of bromoacetic
acid. The synthesized ZILs were characterized using 1H, 13C NMR
spectroscopy (Figure SF5-7) and elemental analysis method.
Catalyst development and characterization: CuO nanoparticles 0.5 mol% catalyst were taken in grinding beaker and milling was
were prepared using method reported in literature 53. Initially, performed continuously for 180 min at the speed of 600 rpm.
copper nitrate was dissolved in 100 ml of double distilled water to Finally, crude reaction mixture was washed with water and
form 0.1 M solution. The ZILs were than incorporated to the suspended 10 ml of methanol to get pure product. NMR technique
aforementioned solution. The resulting solution was stirred (Table ST 12 &Figure SF 8-21) and elemental analysis was used to
vigorously for fifteen minutes. Finally, 0.1 M solution of NaOH was characterize the product.
17.
18.
19.
M. Vashishtha, M. Mishra and D. O. Shah, Green Chem.,
2016, 18, 1339-1354.
A. Stolle, T. Szuppa, S. E. Leonhardt and B. Ondruschka,
Chem. Soc. Rev, 2011, 40, 2317-2329.
A. Stolle, Ball milling towards green synthesis:
applications, projects, challenges,Royal Society of
Chemistry, 2014.
R. Thorwirth and A. Stolle, Synlett, 2011, 2011, 2200-
2202.
T. Raj, H. Sharma, Mayank, A. Singh, T. Aree, N. Kaur, N.
Singh and D. O. Jang, ACS Sus. Chem. Eng., 2017, DOI:
10.1021/acssuschemeng.6b02030.
F. Schneider, A. Stolle, B. Ondruschka and H. Hopf, Org.
Process Res. Dev., 2008, 13, 44-48.
S. L. James, C. J. Adams, C. Bolm, D. Braga, P. Collier, T.
Friščić, F. Grepioni, K. D. Harris, G. Hyett and W. Jones,
Chem. Soc. Rev., 2012, 41, 413-447.
J. Peng and Y. Deng, Tetrahedron Lett., 2001, 42, 5917-
5919.
Q. Zhang, S. Zhang and Y. Deng, Green Chem., 2011, 13,
2619-2637.
C. E. Song, W. H. Shim, E. J. Roh, S.-g. Lee and J. H. Choi,
Chem. Commun., 2001, 1122-1123.
S. Luo, L. Zhang, X. Mi, Y. Qiao and J.-P. Cheng, J.Org
Chem., 2007, 72, 9350-9352.
B. Zhang and N. Yan, Catalysts, 2013, 3, 543-562.
J. Isaad, RSC Adv., 2014, 4, 49333-49341.
H. Singh, J. Sindhu, J. M. Khurana, C. Sharma and K. Aneja,
Eur. J. Med. Chem., 2014, 77, 145-154.
K. Tokarek, J. L. Hueso, P. Kuśtrowski, G. Stochel and A.
Kyzioł, Eur. J. Inorg. Chem., 2013, 2013, 4940-4947.
R. Liu, J. Yin, W. Du, F. Gao, Y. Fan and Q. Lu, Eur. J. Inorg.
Chem., 2013, 2013, 1358-1362.
B. Soberats, M. Yoshio, T. Ichikawa, H. Ohno and T. Kato,
J. Mater. Chem. A, 2015, 3, 11232-11238.
R. Sheldon, Chem. Commun, 2001, 2399-2407.
N. V. Plechkova and K. R. Seddon, Chemical Society
Reviews, 2008, 37, 123-150.
Acknowledgement:
Mayank is thankful to IIT Ropar for fellowship
References
1.
A. Viegas, J. O. Manso, M. C. Corvo, M. M. B. Marques and
E. J. Cabrita, J. Med. Chem., 2011, 54, 8555-8562.
A. Abbott, Nature, 2006, 442, 742-743.
A. Luqman, V. L. Blair, R. Brammananth, P. K. Crellin, R. L.
Coppel and P. C. Andrews, Eur. J Inorg. Chem., 2015, 2015,
4935-4945.
2.
3.
20.
21.
4.
5.
6.
7.
8.
9.
A. G. Habeeb, P. Praveen Rao and E. E. Knaus, J. Med.
Che., 2001, 44, 3039-3042.
K. Davies and M. Delsignore, J. Biol. Chem., 1987, 262,
9908-9913.
L. Benhamou, E. Chardon, G. Lavigne, S. Bellemin-
Laponnaz and V. César, Chem. Rev, 2011, 111, 2705-2733.
V. Polshettiwar and R. S. Varma, Chem.Soc Rev., 2008, 37,
1546-1557.
R. C. Cioc, E. Ruijter and R. V. Orru, Green Chem, 2014, 16,
2958-2975.
22.
23.
24.
25.
26.
27.
K. Satyanarayana, M. R. Chandra, P. A. Ramaiah, Y. Murty,
E. Pandit and S. Pammi, Inorg. Chem. Front., 2014, 1, 306-
310.
10.
11.
12.
K. C. Fylaktakidou, D. R. Gautam, D. J. Hadjipavlou-Litina,
C. A. Kontogiorgis, K. E. Litinas and D. N. Nicolaides, J.
Chem. Soc., Perkin Trans. 1, 2001, 3073-3079.
Z. Debeljak, A. Škrbo, I. Jasprica, A. Mornar, V. Plecko, M.
Banjanac and M. Medic-Šaric, J.Chem.Inf.Model., 2007,
47, 918-926.
J. Neyts, E. D. Clercq, R. Singha, Y. H. Chang, A. R. Das, S. K.
Chakraborty, S. C. Hong, S.-C. Tsay, M.-H. Hsu and J. R.
Hwu, J. Med. Chem., 2009, 52, 1486-1490.
F. Han, W. Liu, L. Zhu, Y. Wang and C. Fang, J. Mater.
Chem. C, 2016, 4, 2954-2963.
M. Vashishtha, M. Mishra and D. O. Shah, Green Chem.,
2016, 5, 1339-1354.
R. Thorwirth, A. Stolle, B. Ondruschka, A. Wild and U. S.
Schubert, Chem. Commun., 2011, 47, 4370-4372.
H. Sharma, N. Singh and D. O. Jang, Green Chem., 2014,
16, 4922-4930.
28.
29.
30.
31.
32.
33.
13.
14.
15.
16.
34.
35.
36.
A. Singh, J. Singh, N. Singh and D. O. Jang, Tetrahedron,
2015, 71, 6143-6147.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 9
Please do not adjust margins