C O M M U N I C A T I O N S
operating.18 Given the importance of C-H activation in PdII and
PtII systems, more studies (both experimental and theoretical) are
underway to investigate the correlation between proton tunneling
and the mechanisms involved.
Acknowledgment. This work was supported by BP through the
MC2 program. An NSF Graduate Research Fellowship to GSC is
gratefully acknowledged. We thank Drs. Michael W. Day and
Lawrence M. Henling for assistance with X-ray crystallography
and Dr. Jonathan S. Owen for suggestions in the preparation of
complex 1b.
Supporting Information Available: Detailed experimental data.
This material is available free of charge via the Internet at http://
pubs.acs.org.
Figure 1. Plot of ln(kH/kD) vs 1/T
References
Scheme 2
(1) Dyker, G. Ed. Handbook of C-H Transformations; Wiley-VCH: Weinheim,
Germany, 2005. and references therein.
(2) Lersch, M.; Tilset, M. Chem. ReV. 2005, 105, 2471–2526, and references
therein.
(3) (a) Kao, L. C.; Hutson, A. C.; Sen, A. J. Am. Chem. Soc. 1991, 113, 700–
701. (b) Lin, M. R.; Shen, C. Y.; Garcia-Zayas, E. A.; Sen, A. J. Am.
Chem. Soc. 2001, 123, 1000–1001. (c) Periana, R. A.; Mironov, O.; Taube,
D.; Bhalla, G.; Jones, C. J. Science 2003, 301, 814–818. (d) An, Z. J.;
Pan, X. L.; Liu, X. M.; Han, X. W.; Bao, X. H. J. Am. Chem. Soc. 2006,
128, 16028–16029.
(4) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507–514.
(5) (a) Ryabov, A. D. Chem. ReV. 1990, 90, 403–424. (b) Jones, W. D. Acc.
Chem. Res. 2003, 36, 140–146, and references therein.
(6) (a) Slaughter, L M.; Wolczanski, P. T.; Klinckman, T. R.; Cundari, T. R.
J. Am. Chem. Soc. 2000, 122, 7953–7975. (b) Yoshizawa, K. Coord. Chem.
ReV. 2002, 226, 251–259, and references therein. (c) Cui, W.; Wayland,
B. B. J. Am. Chem. Soc. 2004, 126, 8266–8274.
lated from those data indicate tunneling (kH/kD ) 8.2 at 296 K and
5.1 at 353 K, AH/AD ) 0.43, EaD - EaH ) 1.7 kcal mol-1). It has
been proposed, based on analysis of equilibrium isotope effects
(EIEs), that factors such as partition quotients and zero-point energy
differences can account for the large KIEs observed in the 1,2-
addition of the C-H bond across Ti-N multiple bonds,6a so that
tunneling does not necessarily need to be invoked; a similar
argument was offered for the above-cited metalloradical C-H
activation.6c In light of the temperature parameters, we would
suggest that tunneling may be a more reasonable explanation for
all of these large KIE values.
(7) (a) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 1996,
118, 5961–5976. (b) Romeo, R.; D’Amico, G. Organometallics 2006, 25,
3435–3446, and references therein Large KIEs have been previously
observed for other types of hydrogen transfer reactions involving inorganic
or organometallic complexes; for examples, see: (c) Whitesides, T. H.;
Neiland, J. P. J. Am. Chem. Soc. 1975, 97, 907–908. (d) Huynh, M. H. V.;
Meyer, T. J. Angew. Chem., Int. Ed. 2002, 21, 1395–1398.
(8) (a) Hill, G. S.; Rendina, L. M.; Puddephatt, R. J. Organometallics 1995,
14, 4966–4968. (b) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem.
Soc. 1995, 117, 9371–9372. (c) Romeo, R.; Plutino, M. R.; Elding, L. I.
Inorg. Chem. 1997, 36, 5909–5916. (d) Stahl, S. S.; Labinger, J. A.; Bercaw,
J. E. Angew. Chem., Int. Ed. 1998, 37, 2180–2192. (e) Bartlett, K. L.;
Goldberg, K. I.; Borden, W. T. J. Am. Chem. Soc. 2000, 122, 1456–1465.
(f) Bartlett, K. L.; Goldberg, K. I.; Borden, W. T. Organometallics 2001,
20, 2669–2678. (g) Wik, B. J.; Lersch, M.; Tilset, M. J. Am. Chem. Soc.
2002, 124, 12116–12117.
The abnormally large KIEs and proton tunneling in the proto-
nolysis of (L-L)PdII(CH3)2 and (COD)PtII(CH3)2 suggest a unifying
mechanism. Two alternate routes have been proposed for proto-
nolysis of M-C bonds (and the corresponding microscopic reverse
reaction, C-H activation): direct protonation of the MII-C bond
or protonation at M (oxidative addition) followed by reductive
elimination (Scheme 2). Platinum(IV) hydride intermediates have
been observed at low temperatures for the protonolysis of several
diamine and diimine ligated platinum dimethyl systems, supporting
the oxidative addition mechanism.7,8 In contrast, no [PtIV-H] is
observed by 1H NMR in the protonolysis of 3 at -80 °C in CD2Cl2;
one might expect the electron-withdrawing COD ligand to disfavor
the formation of a Pt(IV) intermediate. [PdIV-H] is also relatively
unfavorable. It is also notable that no scrambling of H/D between
methyl/methane positions is observed in the systems studied (unlike
the diimine-Pt analogues17), further suggesting that [MIV-H]
intermediates are not involved.
While the possibility of the oxidative addition route cannot be
firmly excluded for the cases studied here, we suggest that they
proceed instead by direct protonation at the M-C bond and that
there is a connection between that mechanism and the observed
tunneling. We would also expect to see evidence for proton
tunneling (high KIEs at room temperature or higher) in electrophilic
C-H activation by PdII and PtII when the microscopic reverse of
this process (direct proton loss from the sigma complex) is
(9) Experimental details including syntheses and the X-ray crystal structure
of 1b (CCDC 263612) are provided in the Supporting Information.
(10) Protonolysis of dimethylpalladium(II) complexes by various alcohols has
been previously reported: (a) Kim, Y. J.; Osakada, K.; Sugita, K.;
Yamamoto, T.; Yamamoto, A. Organometallics 1988, 7, 2182–2188. (b)
Kim, Y. J.; Osakada, K.; Takenaka, A.; Yamamoto, A. J. Am. Chem. Soc.
1990, 112, 1096–1104. (c) Kapteijn, G. M.; Dervisi, A.; Grove, D. M.;
Kooijman, H.; Lakin, M. T.; Spek, A. L.; van Koten, G. J. Am. Chem.
Soc. 1995, 117, 10939–10949.
(11) (a) Bell, R. P. Chem. Soc. ReV. 1974, 4, 513–544. (b) Bell, R. P. The Proton
in Chemistry; Cornell University Press: Ithaca, NY, 1973. (c) Bell, R. P.
The Tunnel Effect in Chemistry; Chapman and Hall: London, 1980.
(12) (a) Caldin, E. F. Chem. ReV. 1969, 69, 135–156. (b) Kwart, H. Acc. Chem.
Res. 1982, 15, 401–408. (c) Melander, L.; Saunders, W. H. Reaction Rates
of Isotopic Molecules; Krieger: Malabar, FL, 1987. (d) Limbach, H.; Lopez,
J. M.; Kohen, A. Philos. Trans. R. Soc. London, Ser. B 2006, 361, 1399–
1415.
(13) Schneider, M. E.; Stern, M. J. J. Am. Chem. Soc. 1972, 95, 1517–1522.
(14) Kohen, A. In Hydrogen-Transfer Reactions; Hynes, J. T.; Klinman, J. P.;
Limbach, H. H.; Schowen, R. L. Eds.; Wiley-VCH: Weinheim, Germany,
2007; Vol. 4, pp 1311-1340.
(15) Schock, L. E.; Brock, C. P.; Marks, T. J. Organometallics 1987, 6, 232–
241.
(16) Pan, Z.; Horner, J. H.; Newcomb, M. J. Am. Chem. Soc. 2008, 130, 7776–
7777.
(17) Owen, J. S.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 2006, 128,
2005.
(18) Computational studies on oxidative addition of methane C-H bond to Pd0
and Pt0 and their microscopic reverse have suggested a significant
contribution of proton tunneling only at low temperature: Datta, A.; Hrovat,
D. A.; Borden, W. T J. Am. Chem. Soc. 2008, 130, 2726–2727. Mamaev,
V. M.; Gloriozov, I. P.; Ishchenko, S. Y.; Simonyan, V. V.; Myshakin,
E. M.; Prisyajnyuk, A. V.; Ustynyuk, Y. A. J. Chem. Soc., Faraday Trans.
1995, 91, 3779–3782.
JA807427D
9
J. AM. CHEM. SOC. VOL. 130, NO. 52, 2008 17655