DPBP–Ru/DPEN: (e) K. Mikami, K. Wakabayashi and K.
Aikawa, Org. Lett., 2006, 8, 1517; (f) Q. Jing, C. A. Sandoval, Z.
Wang and K. Ding, Eur. J. Org. Chem., 2006, 3606.
6 BIPHEP–Rh: K. Mikami, S. Kataoka, Y. Yusa and K. Aikawa,
Org. Lett., 2004, 6, 3699.
7 BIPHEP–Pd: (a) K. Mikami, K. Aikawa, Y. Yusa and M. Hatano,
Org. Lett., 2002, 4, 91; (b) K. Mikami, K. Aikawa and Y. Yusa,
Org. Lett., 2002, 4, 95; (c) K. Mikami, Y. Yusa, K. Aikawa and M.
Hatano, Chirality, 2003, 15, 105.
Notes and references
y Kinetic chirality control: To a mixture of [RhCl(3)]2 (9.4 mg, 0.01 mmol)
and AgBF4 (3.7 mg, 0.019 mmol) was added dry dichloromethane
(1.0 mL) under argon atmosphere, and the mixture was stirred for 6 h
at room temperature. A solution of DM-BIPHEP 1b (12.1 mg,
0.019 mmol) in dry dichloromethane (1.0 mL), prepared in another
Schlenk tube, was then added to the reaction mixture via cannula.
After stirring for 2 h at room temperature, the AgCl precipitate was
removed by filtration under argon atmosphere through a bed of
Celites. Diastereopure (S)-1b-Rh/3 was isolated quantitatively by
concentration of the mixture in vacuo, addition of a few mL of
Et2O, removal of supernatant liquid via syringe, washing with Et2O,
and drying in vacuo.
8 BIPHEP–Pt: (a) J. J. Becker, P. S. White and M. R. Gagne, J. Am.
´
Chem. Soc., 2001, 123, 9478; (b) K. Mikami, H. Kakuno and K.
Aikawa, Angew. Chem., Int. Ed., 2005, 44, 7257; (c) S. Doherty, J.
G. Knight, C. H. Smyth, R. W. Harrington and W. Clegg, Org.
Lett., 2007, 9, 4925.
1H NMR (300 MHz, CDCl3) d 0.60 (d, J = 13.2 Hz, 1H), 0.66 (d, J =
13.2 Hz, 1H), 0.91 (s, 3H), 1.69 (s, 3H), 2.17 (s, 6H), 2.20 (s, 3H), 2.31
(s, 6H), 2.34 (s, 6H), 2.46 (s, 6H), 2.82 (d, J = 14.1 Hz, 1H), 3.52 (d, J
= 15.9 Hz, 1H), 3.71 (d, J = 15.9 Hz, 1H), 4.28 (m, 1H), 4.62 (d, J =
6.3 Hz, 1H), 5.86–5.89 (m, 1H), 6.00–6.03 (m, 1H), 6.66–7.55 (m,
27H), 7.87–7.93 (m, 1H). 31P NMR (121 MHz, CDCl3) d 21.7 (dd,
JRh–P, JP–P = 157.9, 46.0 Hz), 27.4 (dd, JRh–P, JP–P=161.8, 46.0 Hz).
Anal. Calcd for C68H70BF4OP2Rhꢂ2CH2Cl2: C, 63.46; H, 5.63%.
9 Chirality control by chiral anions: (a) J. Lacour and V. Hebbe-
Viton, Chem. Soc. Rev., 2003, 32, 373. Chirality control of tropos
NUPHOS ligands: ; (b) S. Doherty, C. R. Newman, R. K. Rath, H.
Luo, M. Nieuwenhuyzen and J. G. Knight, Org. Lett., 2003, 5,
3863.
10 (a) T. Hayashi, K. Ueyama, N. Tokunaga and K. Yoshida, J. Am.
Chem. Soc., 2003, 125, 11508; (b) N. Tokunaga, Y. Otomaru, K.
Okamoto, K. Ueyama, R. Shintani and T. Hayashi, J. Am. Chem.
Soc., 2004, 126, 13584.
11 C. Fischer, C. Defieber, T. Suzuki and E. M. Carreira, J. Am.
Chem. Soc., 2004, 126, 1628.
12 J. Paquin, C. Defieber, C. R. J. Stephenson and E. M. Carreira, J.
Am. Chem. Soc., 2005, 127, 10850.
27
Found: C, 63.71; H, 5.58%. [a]D = +34.0 (c = 0.08 in CHCl3).
Asymmetric hydrogenation: To a mixture of (S)-1b-Rh/3 (11.5 mg,
0.01 mmol), prepared by kinetic chirality control as described above,
and 2-acetamidoacrylic acid methyl ester 5 (7.2 mg, 0.05 mmol) in a
10 mL Schlenk tube was added dry dichloromethane (0.5 mL) under
argon atmosphere. The mixture was charged with hydrogen gas using
a balloon (1 atm), then stirred for 24 h at 0 1C. The solvent was con-
centrated under reduced pressure. The product 6 was isolated quanti-
tatively by flash chromatography using dichloromethane–MeOH
(19 : 1). Ee values were determined by chiral GC analysis; GC
(column: CP Chirasil Dex CB, i.d. 0.32 mm ꢃ 25 m, CHROMPACK;
carrier gas: nitrogen 75 kPa; column temperature: 100 1C; injection
and detection temperature: 130 1C), tR (S isomer) = 10.9 min, tR
(R isomer) = 11.7 min.
13 (a) C. Defieber, H. Grutzmacher and E. M. Carreira, Angew.
¨
Chem., Int. Ed., 2008, 47, 4482; (b) F. R. Hartley, Chem. Rev.,
1973, 73, 163.
14 Recently, Faller et al. reported the resolution of diastereopure
(S)-1a-Rh/7 by recrystallization from the diastereomeric mixture
((S)-1a-Rh/7 : (R)-1a-Rh/7 = 3 : 1) after the kinetic chirality
control. The structure was proved by X-ray analysis: J. W. Faller
and J. C. Wilt, J. Organomet. Chem., 2006, 691, 2207
1 (a) Catalytic Asymmetric Synthesis, ed. I. Ojima, Wiley-VCH, New
York, 1993, vol. I; Catalytic Asymmetric Synthesis, ed. I. Ojima,
Wiley-VCH, New York, 2000, vol. III; (b) Transition Metals for
Organic Synthesis, ed. M. Beller and C. Bolm, VCH, Weinheim,
1998; (c) Comprehensive Asymmetric Catalysis, ed. E. N. Jacobsen,
A. Pfaltz and H. Yamamoto, Springer, Berlin, 1999, vols. 1–3; (d)
New Frontiers in Asymmetric Catalysis, ed. K. Mikami and M.
Lautens, Wiley, New York, 2007.
2 (a) Stereochemie, ed. K. Freudenberg and W. Kuhn, Franz
Deuticke, Leipzig, 1933, pp. 803–824; (b) K. Mikami, K. Aikawa,
Y. Yusa, J. J. Jodry and M. Yamanaka, Synlett, 2002, 10, 1561.
3 (a) A. Miyashita, A. Yasuda, H. Takaya, K. Toriumi, T. Ito, T.
Souchi and R. Noyori, J. Am. Chem. Soc., 1980, 102, 7932; (b) R.
Noyori and H. Takaya, Acc. Chem. Res., 1990, 23, 345.
4 The activation barrier to axial torsion in selectively deuterated
BIPHEP is measured to be only (22 ꢄ 1) kcal molꢀ1, which
suggests that axial rotation takes place at temperatures around
or above 25 1C: O. Desponds and M. Schlosser, Tetrahedron Lett.,
1996, 37, 47.
5 BIPHEP–Ru: (a) K. Mikami, T. Korenaga, M. Terada, T.
Ohkuma, T. Pham and R. Noyori, Angew. Chem., Int. Ed., 1999,
38, 495; (b) T. Korenaga, K. Aikawa, M. Terada, S. Kawauchi and
K. Mikami, Adv. Synth. Catal., 2001, 3, 284; (c) K. Mikami, K.
Aikawa and T. Korenaga, Org. Lett., 2001, 3, 243; (d) Y. Liang, Z.
Wang and K. Ding, Adv. Synth. Catal., 2006, 348, 1533;
.
15 (a) W. Tang and X. Zhang, Chem. Rev., 2003, 103, 3029; (b) S.
Mori, T. Vreven and K. Morokuma, Chem.–Asian J., 2006, 1, 391.
16 J. M. Hopkins, S. A. Dalrymple, M. Parvez and B. A. Keay, Org.
Lett., 2005, 7, 3765.
17 K. Aikawa, S. Akutagawa and K. Mkami, J. Am. Chem. Soc.,
2006, 128, 12648. Asymmetric catalysts are prepared by a suitable
combination of chiral ligands and metals. The asymmetric catalysts
thus prepared can be further evolved into more activated catalysts
with higher catalytic activity and enantioselectivity by ligation of
chiral activators (‘‘Asymmetric Activation’’, see ref. 18). However,
the additional ligation does not necessarily lead to higher catalytic
activity, for which we have proposed the term ‘‘asymmetric synergy
(effect)’’ leading to higher enantioselectivity without an increase in
the catalytic activity (even with a decrease).
18 (a) K. Mikami, M. Terada, T. Korenaga, Y. Matsumoto, M. Ueki
and R. Angelaud, Angew. Chem., Int. Ed., 2000, 39, 9000; (b) S.
Matsukawa and K. Mikami, Enantiomer, 1996, 1, 69; (c) K.
Mikami and S. Matsukawa, Nature, 1997, 385, 613.
ꢁc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 5095–5097 | 5097