Journal of the American Chemical Society
COMMUNICATION
(4) (a) Vigushin, D. M.; Mirsaidi, N.; Brooke, G.; Sun, C.; Pace, P.;
Inham, L.; Moody, C. J.; Coombes, R. C. Med. Oncol. 2004, 21, 21–30.
(b) Kung, A. L., et al. Cancer Cell 2004, 6, 33–43. (c) Lee, Y.-M. Lim,
J.-H.; Yoon, H.; Chun, Y.-S.; Park, J. W. Hepatology 2011, 53, 171–180.
(5) (a) Griner, D.; Bonaldi, T.; Eskeland, R.; Roemer, E.; Imhof, A.
Nat. Chem. Biol. 2005, 1, 143–145. (b) Block, K. M.; Wang, H.; Szabo,
L. Z.; Polaske, N. W.; Henchey, L. K.; Dubey, R.; Kushal, S.; Laszlo,
C. F.; Makhoul, J.; Song, Z.; Meuillet, E. J.; Olenyuk, B. Z. J. Am. Chem.
Soc. 2009, 131, 18078–18088. (c) Cook, K. M.; Hilton, S. T.; Mecinovic,
J.; Motherwell, W. B.; Figg, W. D.; Schofield, C. J. J. Biol. Chem. 2009,
284, 26831–26838. (d) Tibodeau, J. D.; Benson, L. M.; Isham, C. R.;
Owen, W. G.; Bible, K. C. Antioxid. Redox Signaling 2009,
11, 1097–1106. (e) Reference 4aꢀ4c
(24) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277–
7287.
(25) This intermediate was readily prepared from glycine N-methy-
lamide hydrochloride (see the Supporting Information for details).
(26) Rawal, V. H.; Jones, R. J.; Cava, M. P. J. Org. Chem. 1987,
52, 19–28.
(27) The optical rotation reported for the natural product is [R]D16
þ131.4 (c 0.07, CHCl3).15a We observed limited solubility for synthetic
crystalline 11 in CHCl3; as a result, we could obtain rotation data in this
solvent only under dilute conditions: [R]2D3 þ113 (c 0.0093, CHCl3).
(28) These data have been deposited at The Cambridge Crystal-
lographic Data Centre as entry CCDC 814556 and can be obtained free
(6) (a) Fukuyama, T.; Kishi, Y. J. Am. Chem. Soc. 1976, 98, 6723. For
a full account, see: (b) Fukuyama, T.; Nakatsuka, S.-I.; Kishi, Y.
Tetrahedron 1981, 37, 2045–2078.
(29) Person, D.; Le Corre, M. Bull. Soc. Chim. Fr. 1989, 5, 673–676.
(30) (a) Hentges, S. G.; Sharpless, K. B. J. Am. Chem. Soc. 1980,
102, 4263–4265. (b) Additional K2OsO4 2H2O and (DHQ)2PHAL
3
(7) Kishi, Y.; Fukuyama, T.; Nakatsuka, S. J. Am. Chem. Soc. 1973,
95, 6490–6491.
[or (DHQD)2PHAL] were added, as dihydroxylation of this hindered
double bond is slow.
(8) (a) Kishi, Y.; Fukuyama, T.; Nakatsuka, S. J. Am. Chem. Soc.
1973, 95, 6492–6493. (b) Kishi, Y.; Nakatsuka, S.; Fukuyama, T.; Havel,
M. J. Am. Chem. Soc. 1973, 95, 6493–6495. (c) Wu, Z.; Williams, L. J.;
Danishefsky, S. J. Angew. Chem., Int. Ed. 2000, 39, 3866–3868.
(9) Kim, J.; Ashenhurst, J. A.; Movassaghi, M. Science 2009,
324, 238–241.
(10) The Movassaghi group recently disclosed a strategy for the
introduction of multiple sulfur atoms that culminated in the total
synthesis of the dimeric epitri- and epitetradioxopiperazine alkaloids
(þ)-chaetocin C and (þ)-11,110-dideoxychetracin A, respectively. See:
Kim, J.; Movassaghi, M. J. Am. Chem. Soc. 2010, 132, 14376–14378.
(11) Iwasa, E.; Hamashima, Y.; Fujishiro, S.; Higuchi, E.; Ito, A.;
Yoshida, M.; Sodeoka, M. J. Am. Chem. Soc. 2010, 132, 4078–4079.
(12) Overman, L. E.; Shin, Y. Org. Lett. 2007, 9, 339–341.
(13) Dong, J.-Y.; He, H.-P.; Shen, Y.-M.; Zhang, K.-Q. J. Nat. Prod.
2005, 68, 1510–1513.
(31) After purification, this product contained ∼5% β-diol.
(32) For an early construction of epidithiodioxopiperazines from the
acid-promoted reaction of H2S with dioxopiperazines having leaving
groups at C3 and C6, see: Ottenheijm, H. C. J.; Kerkhoff, G. P. C.; Bijen,
J. W. H. A. J. Chem. Soc., Chem. Commun. 1975, 768–769.
(33) The relative configuration of this product was confirmed by
single-crystal X-ray diffraction of the corresponding racemate. These
data have been deposited at The Cambridge Crystallographic Data
Centre as entry CCDC 814557 and can be obtained free of charge via
(34) Preparation of gliocladine C directly from diol precursor 25 was
problematic because of the acid sensitivity of C11-hydroxylated
pyrrolidinoindolines.12
(35) Overman, L. E.; Sato, T. Org. Lett. 2007, 9, 5267–5270.
(14) Cytotoxicity against methicillin-resistant Staphylococcus aureus
and quinolone-resistant S. aureus and nematicidal activity have been
reported for the gliocladines.13
(15) (a) Usami, Y.; Yamaguchi, J.; Numata, A. Heterocycles 2004,
63, 1123–1129. (b) Gliocladin C was recently isolated from a terrestrial
fungus. See: Bertinetti, B. V.; Rodriguez, M. A.; Godeas, A. M.; Cabrera,
G. M. J. Antibiot. 2010, 63, 681–683.
(16) The numbering system for gliocladine C used by Zhang and co-
workers13 has been employed. For a discussion of the various positional
numbering systems used in this area, see p S3 of ref 9.
(17) For the reverse approach wherein the dielectrophile is achiral
and the dinucleophile chiral, see ref 8b.
(18) Steglich, W.; H€ofle, G. Tetrahedron Lett. 1970, 11, 4727–4730.
(19) For pioneering studies of asymmetric carboxyl migrations of
oxindole-derived enoxycarbonates, see: (a) Hills, I. D.; Fu, G. C. Angew.
Chem., Int. Ed. 2003, 42, 3921–3924. (b) Shaw, S. A.; Aleman, P.; Vedejs,
E. J. Am. Chem. Soc. 2003, 125, 13368–13369. (c) Shaw, S. A.; Aleman,
P.; Christy, J.; Kampf, J. W.; Va, P.; Vedejs, E. J. Am. Chem. Soc. 2006,
128, 925–934.
(20) 3-Hydroxy-3,30-biindolin-2-one (15) was prepared in 75%
yield from the reaction of isatin and indole. See: Bergman, J. Acta Chem.
Scand. 1971, 25, 1277–1280.
(21) (a) Rajeswaran, W. G.; Cohen, L. A. Tetrahedron 1998,
54, 11375–11380. (b) Porcs-Makkay, M.; Argay, G.; Kꢀalmꢀan, A.; Simig,
G. Tetrahedron 2000, 56, 5893–5903.
(22) For example, global reduction of 18 could be accomplished
with several reducing agents (i.e., LiBH4, NaBH4, LiAlH4) to afford the
3-hydroxymethyl-2-hydroxyindoline intermediates. However, these re-
actions resulted in partial racemization of the quaternary carbon
stereocenter, presumably at the stage of a 3-formyl-2-hydroxyindoline
intermediate. See: (a) Dmitrienko, G. I.; Denhart, D.; Mithani, S.;
Prasad, G. K. B.; Taylor, N. J. Tetrahedron Lett. 1992, 33, 5705–5708. (b)
Ziegler, F. E.; Belema, M. J. Org. Chem. 1997, 62, 1083–1094.
(23) Soai, K.; Ookawa, A. J. Org. Chem. 1986, 51, 4000–4005.
6552
dx.doi.org/10.1021/ja201789v |J. Am. Chem. Soc. 2011, 133, 6549–6552