Scheme 1
.
Optimization of the Reaction Temperature
Table 1. Solvent and PTC Effects on Pd(0)-Catalyzed Coupling
Cyclization of 1a in the Presence of Pentyn-3-yl Carbonate 2aa
yield of
entry
solvent
PTC
time (h)
3aab (%)
1
2
3
4
5
CH3CN
DMF
toluene
DCE
10 mol % TBAB
10 mol % TBAB
10 mol % TBAB
10 mol % TBAB
10 mol % TBAB
10 mol % TBAB
no PTC
30 mol % TBAB
10 mol % TBAI
10 mol % TBAC
1
1
1
1
1
1
48
1
1
1
94
65
91
87
92
88
THF
allenylic/propargylic palladium intermediates, which may
further react with alkenes, terminal or internal alkynes, and
CO to afford 1,2,4-trienes,6,7 4,5-allenyl aldehydes/ketones,7
2,3-allenoic acids,8 esters,8a,9 and amides,10 respectively. To
the best of our knowledge, the insertion of the above
σ-allenylpalladium species into an allene has not yet been
explored.11 As part of our program investigating the transi-
tion-metal-catalyzed coupling cyclization of functionalized
allenes12 we report here an efficient and exclusive route to
synthesize cyclopropylvinyl allene via the Pd(0)-catalyzed
regioselective coupling cyclization of (2,3-butadienyl)ma-
lonates or bis(phenylsulfonyl)methane with propargylic car-
bonates.
6
CH3NO2
CH3CN
CH3CN
CH3CN
CH3CN
7c
8
39d
(80)e
96
9
10
54
a The reaction was carried out using 0.2 mmol of 1a, 0.3 mmol of
2a, 5 mol % Pd(PPh3)4, and 10 mol % TBAB in 2 mL of solvent at 80 °C
in a Schlenk tube. TBAB ) tetrabutylammonium bromide. TBAI )
tetrabutylammonium iodide. TBAC ) tetrabutylammonium chloride.
b Isolated yield; the yield in parentheses is the NMR yield using mesitylene
as the interal standard. c The reaction was conducted at 40 °C. d 15% of
the starting material was recovered. e 8% of the starting material was
recovered.
Our initial investigation was based on the reaction of
dimethyl (2,3-butadienyl)malonate 1a with pentyn-3-yl car-
bonate 2a in the presence of 5 mol % of Pd(PPh3)4 and 10
mol % of TBAB in CH3CN at 40 °C. Interestingly, we
observed the exclusive formation of 1,3,4-alkatrien-2-yl
cyclopropane derivative 3aa as the only product in 65%
yield. The formation of the 5-membered product 4aa was
not observed. After some screening, best results were
obtained when the reaction was conducted at 80 °C, affording
3aa in 94% yield (Scheme 1).
Next, the solvent effect on the reaction was examined
(entries 1-6, Table 1). To our delight, this reaction was very
general for the solvents tested except for DMF (entry 2, Table
1). Among the solvents tested, CH3CN afforded the product
3aa in the highest yield (entry 1, Table 1). A survey of phase-
transfer catalysts (PTC) indicated that the presence of a
phase-transfer catalyst is essential to the reaction (entries
7-10, Table 1): the reaction is very sluggish in the absence
of PTC (entry 7, Table 1). However, increasing the amount
of TBAB did not favor the reaction (entry 8, Table 1). In
the presence of 10 mol % of TBAI, the yield of the desired
1,3,4-alkatrien-2-yl cyclopropane derivative 3aa can be
further improved to 96% (entry 9, Table 1). TBAC is also
effective, albeit with a much lower yield of 3aa (entry 10,
Table 1).
(5) For reviews, see: (a) Tsuji, J. Angew. Chem., Int. Ed. 1995, 34, 2589.
(b) Tsuji, J.; Mandai, T. Metal-Catalyzed Cross-Coupling Reactions;
Diederich, F., Stang, P. J., Eds.; Wiley-VCH: New York, 1998; p 455.
(6) (a) Monteiro, N.; Arnold, A.; Balme, G. Synlett 1998, 1111. (b)
Cacchi, S.; Fabrizi, G.; Moro, L. Tetrahedron Lett. 1998, 39, 5101. (c)
Ishikura, M.; Matsuzaki, Y.; Katagiri, N. Tetrahedron 1998, 54, 13929
(7) Tadakatsu, M.; Masakazu, O.; Hiromasa, Y.; Tatsuya, N.; Hiroshi,
M. Tetrahedron Lett. 1991, 32, 3397
.
.
(8) (a) Marshall, J. A.; Wolf, M. A.; Wallace, E. M. J. Org. Chem.
1997, 62, 367. (b) Bartley, G. S.; Wallace, E. M. J. Org. Chem. 1996, 61,
5729. (c) Bartley, G. S.; Wallace, E. M. J. Org. Chem. 1995, 60, 796. (d)
Marshall, J. A.; Van Devender, E. A. J. Org. Chem. 2001, 66, 8037.
(9) (a) Tsuji, J.; Sugiura, T.; Minami, I. Tetrahedron Lett. 1986, 27,
731. (b) Mandai, T.; Tsujiguchi, Y.; Matsuoka, S.; Tsuji, J.; Saito, S.
Tetrahedron Lett. 1994, 35, 5697. (c) Li, Y.; Zou, H.; Gong, J.; Xiang, J.;
Luo, T.; Quan, J.; Wang, G.; Yang, Z. Org. Lett. 2007, 9, 4057
(10) Imada, Y.; Alper, H. J. Org. Chem. 1996, 61, 6766.
(11) Ma, S.; Gu, Z.; Deng, Y. Chem. Commun. 2006, 94.
.
To demonstrate the efficiency and scope of the present
method, we applied the above optimized reaction conditions
to a variety of (2,3-butadienyl)malonates 1 and propargylic
carbonates 2. The results are summarized in Table 2. To our
delight, besides the simple methyl (2,3-butadienyl)malonate,
ethyl- and benzyl-substituted methyl (2,3-butadienyl)ma-
lonates at the 2′ position afforded the corresponding 1,3,4-
alkatrien-2-ylcyclopropane derivatives with a quaternary
carbon center in good yields (entries 1-4, Table 2). It is
noted that the formation of all-carbon quaternary centers is
not easy since the process requires the creation of a new
(12) For some selected recent examples of cyclization of allenes, see:
(a) Kumareswaran, R.; Gallucci, J.; RajanBabu, T. V. J. Org. Chem. 2004,
69, 9151. (b) Dondas, H. A.; Fishwick, C. W. G.; Gai, X.; Grigg, R.; Kilner,
C.; Dumrongchai, N.; Kongkathip, B.; Kongkathip, N.; Polysuk, C.;
Sridharan, V. Angew. Chem., Int. Ed. 2005, 44, 7570. (c) Ma, S.; Gu, Z.
J. Am. Chem. Soc. 2005, 127, 6182. (d) Trillo, B.; Gulías, M.; López, F.;
Castedo, L.; Mascaren˜as, J. L. AdV. Synth. Catal. 2006, 348, 2381. (e) Gu,
Z.; Wang, X.; Shu, W.; Ma, S. J. Am. Chem. Soc. 2007, 129, 10948. (f)
Banaag, A. R.; Tius, M. S. J. Am. Chem. Soc. 2007, 129, 5328. (g)
Tsukamoto, H.; Matsumoto, T.; Kondo, Y. J. Am. Chem. Soc. 2007, 130,
388. (h) Piera, J.; Krumlinde, P.; Stru¨bing, D.; Ba¨ckvall, J. E. J. Am. Chem.
Soc. 2007, 129, 14120. (i) Hamaguchi, H.; Kosaka, S.; Ohno, H.; Fujii, N.;
Tanaka, T. Chem.sEur. J. 2007, 13, 1692. (j) Tsukamoto, H.; Kondo, Y.
Org. Lett. 2008, 10, 2633. (k) Trillo, B.; López, F.; Gulías, M.; Castedo,
L.; Mascaren˜as, J. L. Angew. Chem., Int. Ed. 2008, 47, 951.
118
Org. Lett., Vol. 11, No. 1, 2009