J. C. López, P. Bernal-Albert, C. Uriel, A. M. Gómez
SHORT COMMUNICATION
Uriel, A. Agocs, A. M. Gómez, J. C. López, B. Fraser-Reid,
Org. Lett. 2005, 7, 4899–4902.
quenched with Et3N and washed with 10% aqueous sodium thio-
sulfate containing sodium hydrogen carbonate, and water. The or-
ganic layer was dried, concentrated, and the residue purified by
flash chromatography.
[7]
a) Y. Zhang, E. J. Fechter, T.-S. A. Wang, D. Barrett, S. Walker,
D. E. Kahne, J. Am. Chem. Soc. 2007, 129, 3080–3081; b) G.
Gu, Y. Du, R. J. Linhardt, J. Org. Chem. 2004, 69, 5497–5500;
c) O. J. Plante, E. R. Palmacci, R. B. Andrade, P. H. Seeberger,
J. Am. Chem. Soc. 2001, 123, 9545–9554; d) L. Green, B.
Hinzen, S. J. Ince, P. Langer, S. V. Ley, S. L. Warriner, Synlett
1998, 440–442; e) G. J. Boons, T. Zhu, Synlett 1997, 809–811.
J. C. López, A. Agocs, C. Uriel, A. M. Gómez, B. Fraser-Reid,
Chem. Commun. 2005, 5088–5090.
Selected Data for 6-O-Pivaloyl-3-O,4-O-[(2ЈS,3ЈS)-2Ј,3Ј-dimeth-
oxybutan-2Ј,3Ј-diyl]-α-D
-glucopyranosyl Fluoride (α-17): 1H NMR
(300 MHz, CDCl3): δ = 5.52 (dd, J = 49.0, 1.3 Hz, 1 H), 4.55 (dd,
J = 12.1, 1.9 Hz, 1 H), 4.28–3.96 (m, 5 H), 3.26 (s, 3 H), 3.23 (s, 3
H), 1.31 (s, 3 H), 1.27 (s, 3 H), 1.19 (s, 9 H) ppm. API-ES (positive)
MS: m/z = 398.5 [M + NH4]+, 403.3 [M + Na]+. C17H29FO8
(380.18): calcd. C 53.67, H 7.68; found C 53.43, H 7.56.
[8]
[9]
a) S. Hanessian, B. Lou, Chem. Rev. 2000, 100, 4443–4463; b)
S. Hanessian, P. P. Lu, H. Ishida, J. Am. Chem. Soc. 1998, 120,
13296–13330.
Reaction of Phenyl 6-O-Trityl-1-thio-͗-D-mannopyranose (24) with
NIS/Et3N·3HF: To a solution of the thioglycoside 24 (52 mg,
0.1 mmol) in dry CH2Cl2 (5 mL) under argon cooled to –10 °C was
added N-iodosuccinimide (44.8 mg, 0.2 mmol, 2.0 equiv.) followed
by Et3N·3HF (0.326 mL, 2 mmol). After the starting material had
disappeared (20 min), the reaction mixture was quenched with
Et3N and partially concentrated in the cold to remove most of the
CH2Cl2. The resulting solution was then submitted to filtration
through a short pad of silica gel (CH2Cl2/MeOH, 95:5), and the
purified fractions were resubmitted to flash chromatography
(EtOAc). Pure α-25 (24 mg, 57%) was first eluted, followed by a
mixture of α/β-25 (8 mg, 18%). α-25: [α]D = +9.9 (c = 0.7, CHCl3).
1H NMR (300 MHz, CDCl3): δ = 7.38–7.14 (m, 15 H), 5.51 (dd, J
= 49.4, 1.3 Hz, 1 H), 3.96 (m, 1 H), 3.85–3.63 (m, 3 H), 3.38 (dd,
J = 9.9, 3.8 Hz, 1 H), 3.33 (dd, J = 9.9, 4.6 Hz, 1 H) ppm. 13C
NMR (75 MHz, CDCl3): δ = 143.3 (ϫ3), 128.5 (ϫ6), 128.0 (ϫ6),
127.3 (ϫ3), 107.3 (d, J = 219.4 Hz), 87.4, 72.1 (d, J = 2.5 Hz), 70.6,
69.1, 68.7 (d, J = 38.4 Hz), 63.9 ppm. API-ES (positive) MS: m/z
= 425.5 [M + H]+, 447.7 [M + Na]+. C25H25FO5 (424.17): calcd. C
70.74, H 5.94; found C 70.65, H 5.68.
[10]
[11]
a) J. Barluenga, P. J. Campos, J. M. González, J. L. Suárez, J.
Org. Chem. 1991, 56, 2234–2237; b) J. Barluenga, Pure Appl.
Chem. 1999, 71, 431–436.
a) P. J. Garegg, Adv. Carbohydr. Chem. Biochem. 1997, 52, 179–
266; b) S. Oscarson in Carbohydrates in Chemistry and Biology
(Eds: B. Ernst, G. W. Hart, P. Sinaÿ), Wiley-VCH, Weinheim,
2000, vol. 1, pp. 93–116.
a) B. Fraser-Reid, P. Konradsson, D. R. Mootoo, J. Chem.
Soc., Chem. Commun. 1988, 823–825; b) B. Fraser-Reid, U. E.
Udodong, Z. Wu, H. Ottosson, J. R. Merrit, C. S. Rao, C. Rob-
erts, R. Madsen, Synlett 1992, 927–942.
Orthogonal glycosylation: a) O. Kanie, Y. Ito, T. Ogawa, J. Am.
Chem. Soc. 1994, 116, 12073–12074; b) O. Kanie, Y. Ito, T.
Ogawa, Tetrahedron Lett. 1996, 37, 4551–4554; c) O. Kanie, in
Carbohydrates in Chemistry and Biology (Eds: B. Ernst, G. W.
Hart, P. Sinaÿ), Wiley-VCH, Weinheim, 2000, vol. 1, ch. 16.
Semiorthogonal glycosylation: A. V. Demchenko, C. De Meo,
Tetrahedron Lett. 2002, 43, 8819–8822.
[12]
[13]
[14]
[15]
[16]
[17]
J. C. López, C. Uriel, A. Guillamón-Martín, S. Valverde, A. M.
Gómez, Org. Lett. 2007, 9, 2759–2762.
For a related use of IPy2BF4 in glycosylation, see: T.-K. Huang,
N. Winssinger, Eur. J. Org. Chem. 2007, 1887–1890.
A related IBr-mediated bromination of thioglycosides has been
reported: K. P. R. Kartha, R. A. Field, Tetrahedron Lett. 1997,
38, 8233–8236.
Acknowledgments
[18]
[19]
[20]
J. C. López, P. Bernal-Albert, C. Uriel, S. Valverde, A. M.
Gómez, J. Org. Chem. 2007, 72, 10268–10271.
G. A. Olah, J. T. Welch, Y. D. Vankar, M. Nojima, I. Kerekes,
J. A. Olah, J. Org. Chem. 1979, 44, 3872–3881.
HF–pyridine complex has been used as a source of fluoride in
the preparation of glycosyl fluorides: a) M. Hayashi, S. Hashi-
moto, R. Noyori, Chem. Lett. 1984, 1747–1750; b) W. A. Sza-
rek, G. Grynkiewicz, B. Doboszewski, G. W. Hay, Chem. Lett.
1984, 1751–1754; c) W. Bröder, H. Kunz, Carbohydr. Res. 1993,
249, 221–241; d) M. Palme, A. Vasella, Helv. Chim. Acta 1995,
78, 959–969; e) Y. J. Lee, B. Y. Lee, H. B. Jeon, K. S. Kim, Org.
Lett. 2006, 8, 3971–3974.
This research has been supported by funds from the Ministerio de
Ciencia y Tecnología (CTQ-2006-C03). We thank Prof. Bert Fraser-
Reid (Natural Products and Glycotechnology Research Institute)
for helpful suggestions in the preparation of this manuscript. P. B-
A. thanks the Consejo Superior de Investigaciones Científicas
(CSIC) for financial support.
[1] a) Handbook of Chemical Glycosylation (Ed.: A. V. Dem-
chenko), Wiley-VCH, Weinheim, 2008; b) K. Toshima, K. Tat-
suta, Chem. Rev. 1993, 93, 1503–1531.
[2] a) A. V. Demchenko, Lett. Org. Chem. 2005, 2, 580–589; b)
B. G. Davis, J. Chem. Soc., Perkin Trans. 1 2000, 2137–2160; c)
G.-J. Boons, Tetrahedron 1996, 52, 1095–1121; d) H. Paulsen,
Angew. Chem. Int. Ed. Engl. 1990, 29, 823–838.
[3] a) G. Reuter, H. J. Gabius, Cell Mol. Life Sci. 1999, 55, 368–
422; b) A. Varki, Glycobiology 1993, 3, 97–130.
[4] R. E. J. N. Litjens, L. J. van den Bos, J. D. C. Codée, H. S. Ov-
erkleeft, G. A. van der Marel, Carbohydr. Res. 2007, 342, 419–
429.
[21]
R. U. Lemieux, A. R. Morgan, Can. J. Chem. 1965, 43, 2190–
2197.
[22]
[23]
M. A. McClinton, Aldrichim. Acta 1995, 28, 31–35.
Et3N·3HF has been used as a source of fluoride in the prepara-
tion of glycosyl fluorides: R. Miethchen, G. Kolp, J. Fluorine
Chem. 1993, 60, 49–55.
a) S. V. Ley, H. W. M. Priepke, S. L. Warriner, Angew. Chem.
Int. Ed. Engl. 1994, 33, 2290–2292; b) S. V. Ley, H. W. M.
Priepke, Angew. Chem. Int. Ed. Engl. 1994, 33, 2292–2294.
J.-L. Montchamp, F. Tian, M. E. Hart, J. W. Frost, J. Org.
Chem. 1996, 61, 3897–3899.
a) K. P. R. Kartha, M. Aloui, R. A. Field, Tetrahedron Lett.
1996, 37, 5175–5178; b) K. P. R. Kartha, M. Aloui, R. A.
Field, Tetrahedron Lett. 1996, 37, 8807–8810.
R. M. van Well, T. S. Kärkkäinen, K. P. R. Kartha, R. A.
Field, Carbohydr. Res. 2006, 341, 1391–1397.
[24]
[25]
[26]
[5] B. Fraser-Reid, J. C. López, A. M. Gómez, C. Uriel, Eur. J.
Org. Chem. 2004, 1387–1395.
[6] a) B. Fraser-Reid, J. C. López, K. V. Radhakrishnan, M. Mach,
U. Schlueter, A. M. Gómez, C. Uriel, J. Am. Chem. Soc. 2002,
124, 3198–3199; b) B. Fraser-Reid, G. N. Anilkumar, L. G.
Nair, K. V. Radhakrishnan, J. C. López, A. Gómez, C. Uriel,
Aust. J. Chem. 2002, 55, 123–130; c) B. Fraser-Reid, J. C.
López, K. V. Radhakrishnan, M. Mach, U. Schlueter, A.
Gómez, C. Uriel, Can. J. Chem. 2002, 80, 1075–1087; d) C.
[27]
[28]
M. B. Cid, S. Valverde, J. C. López, A. M. Gómez, M. García,
Synlett 2005, 1095–1100.
5040
www.eurjoc.org
© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2008, 5037–5041