´
SESAME Program of the Region Ile-de-France, the Integrated
Infrastructure Initiative (Contract # RII3-026145, EU-NMR)
of the 6th Framework Program of the EU, the CNRS and the
Ecole Normale Superieure for financial support.
´
Notes and references
1 (a) H. A. Bent, Chem. Rev., 1968, 68, 587; (b) A. C. Legon, Angew.
Chem., Int. Ed., 1999, 38, 2687.
2 P. Metrangolo, H. Neukirch, T. Pilati and G. Resnati, Acc. Chem.
Res., 2005, 38, 386 and references therein.
3 (a) O. Hassel, Science, 1970, 170, 497–502; (b) G. R. Desiraju,
Angew. Chem., Int. Ed. Engl., 1995, 34, 2311; (c) J. P. M.
Lommerse, A. J. Stone, R. Taylor and F. H. Allen, J. Am. Chem.
Soc., 1996, 118, 3108; (d) P. Metrangolo and G. Resnati,
Chem.–Eur. J., 2001, 7, 2511; (e) J.-L. Syssa-Magale, K. Boube-
´
keur, P. Palvadeau, A. Meerschaut and B. Schollhorn, CrystEng-
¨
Comm, 2005, 7, 302.
4 G. A. Jeffrey, An Introduction to Hydrogen Bonding, Oxford
University Press, Oxford, 1997.
5 G. Resnati, T. Pilati, R. Liantonio and F. Meyer, J. Polym. Sci.,
Part A: Polym. Chem., 2007, 45, 1 and references therein.
6 P. Auffinger, F. A. Hays, E. Westhof and P. Shing Ho, Proc. Natl.
Acad. Sci. U. S. A., 2004, 16789, and references therein.
7 Starting from potassium phthalate containing 98% of 15N the
enriched benzylamine could be obtained as described in a modified
procedure of the Gabriel Synthesis. (H. R. Ing and R. H. F.
Manske, J. Chem. Soc., 1926, 2348). The following reductive
amination of 4-iodobenzaldehyde yielded compound 1. For further
details see ESIw.
Fig. 3 Experimental and simulated o1/2p projections from site II
(upfield signal in Fig. 1) of compound 1. All experimental conditions
and simulations were the same as those given in the caption of
Fig. 2.
¨
8 J. Leroy, B. Schollhorn, J.-L. Syssa-Magale, K. Boubekeur and P.
´
Palvadeau, J. Fluorine Chem., 2004, 125, 1379.
9 (a) M. T. Messina, P. Metrangolo, W. Panzeri, E. Ragg and G.
Resnati, Tetrahedron Lett., 1998, 9069; (b) P. Metrangolo, W.
Panzeri, F. Recupero and G. Resnati, J. Fluorine Chem., 2002, 114,
27; (c) R. Glaser, N. Chen, H. Wu, N. Knotts and M. Kaupp, J.
Am. Chem. Soc., 2004, 126, 4412.
10 T. G. Oas, R. G. Griffin and M. H. Levitt, J. Chem. Phys., 1988,
89, 692.
11 D. L. Bryce and G. D. Sward, Magn. Reson. Chem., 2006, 44, 409.
12 Z. Gan, D. M. Grant and R. R. Ernst, Chem. Phys. Lett., 1996,
254, 349.
Table 1 Magnitudes and relative orientations of the 15N chemical
shift and 15N–127I dipolar coupling tensors along with corresponding
internuclear N–I distances for the two distinguishable nitrogen sites in
compound 1
Site Dd/Hza
Zb
dNÁ Á ÁI/Hz rNÁ Á ÁI/A
aCS (1) bCS (1)
13 L. Duma, D. Abergel, P. Tekely and G. Bodenhausen, Chem.
Commun., 2008, 2361.
14 (a) L. Odgaard, M. Bak, H. J. Jakobsen and N. C. Nielsen, J.
Magn. Reson., 2001, 148, 298–308; (b) Z. Gan, Chem. Commun.,
2006, 4712.
I
À475 Æ 20 0.67 Æ 0.1 127 Æ 5 2.7 Æ 0.04 0.0 Æ 15 23.0 Æ 2
II À512 Æ 20 0.72 Æ 0.1 100 Æ 5 2.9 Æ 0.05 0.0 Æ 15 25.0 Æ 2
a
b
The anisotropy is defined as Dd = d33 À diso
.
The asymmetry as
15 M. Bechmann, S. Dusold, H. Forster, U. Haeberlen, T. Lis, A.
¨
Z = (d22 À d11)/Dd with d11 Z d22 Z d33
.
Sebald and M. Stumber, Mol. Phys., 2000, 98, 605.
16 S. Dusold and A. Sebald, Mol. Phys., 1998, 95, 1237.
17 P. J. Chu, J. H. Lunsford and D. J. Zalewski, J. Magn. Reson.,
1990, 87, 68.
18 (a) C. Gardiennet-Doucet, B. Henry and P. Tekely, Prog. Nucl.
Magn. Reson. Spectrosc., 2006, 49, 129–149; (b) C. Gardiennet, B.
Henry, P. Kuad, B. Spiess and P. Tekely, Chem. Commun., 2005,
180–18; (c) B. Henry, P. Tekely and J. J. Delpuech, J. Am. Chem.
Soc., 2002, 124, 2025–2034; (d) C. Gardiennet-Doucet, X. Assfeld,
B. Henry and P. Tekely, J. Phys. Chem. A, 2006, 110, 9137.
19 M. Bak, J. T. Rasmussen and N. C. Nielsen, J. Magn. Reson.,
2000, 147, 296.
20 (a) P. Tekely, P. Palmas and D. Canet, J. Magn. Reson., 1994,
A107, 129–133; (b) A. Detken, E. H. Hardy, M. Ernst and B. H.
Meier, Chem. Phys. Lett., 2002, 356, 298.
21 (a) C. Gardiennet, F. Marica, X. Assfeld and P. Tekely, Angew.
Chem., Int. Ed., 2004, 43, 3565–3568; (b) C. Gardiennet, F. Marica,
C. A. Fyfe and P. Tekely, J. Chem. Phys., 2005, 122, 054705.
22 (a) A. Bondi, J. Phys. Chem., 1964, 68, 441; (b) S. C. Nyburg and
C. H. Faerman, Acta Crystallogr., Sect. B: Struct. Sci., 1985, 41,
274.
transient oscillations of the 15N magnetization at the begin-
ning of the rotary resonance period, after the sudden reduction
of the RF field amplitude following cross-polarization.
In summary, we have shown that solid-state NMR permits
the determination of the lengths of non-covalent halogen
bonds. The new spectroscopic fingerprint of halogen bonding
reported in this work should be useful to visualize inter-
molecular contacts in halogen bond-driven self-assembling
aggregates. The approach used is not restricted to isolated
heteronuclear spin pairs and can be extended to larger spin
systems, although these will require extensive numerical
simulations.
The authors are grateful to Fabien Ferrage for stimulating
discussions. We acknowledge the ANR-05-BLAN-0255, the
ꢀc
This journal is The Royal Society of Chemistry 2008
Chem. Commun., 2008, 5981–5983 | 5983