ORGANIC
LETTERS
2009
Vol. 11, No. 2
457-459
Stereoselective Synthesis of Nipecotic
Acid Derivatives via Palladium-Catalyzed
Decarboxylative Cyclization of
γ-Methylidene-δ-valerolactones with
Imines
Ryo Shintani,* Masataka Murakami, and Tamio Hayashi*
Department of Chemistry, Graduate School of Science, Kyoto UniVersity,
Sakyo, Kyoto 606-8502, Japan
shintani@kuchem.kyoto-u.ac.jp; thayashi@kuchem.kyoto-u.ac.jp
Received November 7, 2008
ABSTRACT
A new synthetic method of multisubstituted nipecotic acid (piperidine-3-carboxylic acid) derivatives has been developed by way of palladium-
catalyzed decarboxylative cyclization of γ-methylidene-δ-valerolactones with imines. By employing the diethoxyphosphinoyl group as the
N-protecting group for imines, the reaction proceeds smoothly with high diastereoselectivity. The products thus obtained can be further
derivatized with high efficiency under simple reaction conditions.
Nipecotic acid derivatives are widely spread as a common
structural motif in natural and synthetic biologically active
compounds such as GABA uptake inhibitors.1,2 It is therefore
of high value to devise an efficient synthetic method for these
compounds. Functional group manipulation of preformed
nipecotic or nicotinic acid derivatives is most commonly
utilized for their preparation,2,3 and construction of the
piperidine ring in a convergent manner is very rare in this
context. Herein we describe the development of a palladium-
catalyzed decarboxylative cyclization of γ-methylidene-δ-
valerolactones4 with N-diethoxyphosphinoyl imines to pro-
duce multisubstituted nipecotic acid derivatives in a
diastereoselective fashion.5,6
We began our investigation by conducting reactions of
γ-methylidene-δ-valerolactone 1a with benzaldimines (1.2
equiv) in the presence of 5 mol % of Pd/dppf catalyst in
(1) For a review, see: (a) Clausen, R. P.; Madsen, K.; Larsson, O. M.;
Frølund, B.; Krogsgaard-Larsen, P.; Schousboe, A. AdV. Pharmacol. 2006,
54, 265. See also: (b) Wang, H.; Hussain, A. A.; Wedlund, P. J Pharm.
(4) (a) Shintani, R.; Murakami, M.; Hayashi, T. J. Am. Chem. Soc. 2007,
129, 12356. (b) Shintani, R.; Park, S.; Hayashi, T. J. Am. Chem. Soc. 2007,
129, 14866. (c) Shintani, R.; Park, S.; Shirozu, F.; Murakami, M.; Hayashi,
T. J. Am. Chem. Soc. 2008, 130, 16174.
Res. 2005, 22, 556
.
(2) (a) Zhou, C.; Guo, L.; Morriello, G.; Pasternak, A.; Pan, Y.; Rohrer,
S. P.; Birzin, E. T.; Huskey, S. W.; Jacks, T.; Schleim, K. D.; Cheng, K.;
Schaeffer, J. M.; Patchett, A. A.; Yang, L. Bioorg. Med. Chem. Lett. 2001,
11, 415. (b) Manfredini, S.; Pavan, B.; Vertuani, S.; Scaglianti, M.;
Compagnone, D.; Biondi, C.; Scatturin, A.; Tanganelli, S.; Ferraro, L.;
Prasad, P.; Dalpiaz, A. J. Med. Chem. 2002, 45, 559. (c) N’Goka, V.;
Stenbøl, T. B.; Krogsgaard-Larsen, P.; Schlewer, G. Eur. J. Med. Chem.
2004, 39, 889. (d) Zhang, J.; Zhang, P.; Liu, X.; Fang, K.; Lin, G. Bioorg.
(5) For recent examples of substituted piperidine synthesis by (formal)
[4 + 2] cycloadditions, see: (a) Toure´, B. B.; Hall, D. G. Angew. Chem.,
Int. Ed. 2004, 43, 2001. (b) Yu, S.; Zhu, W.; Ma, D. J. Org. Chem. 2005,
70, 7364. (c) Wurz, R. P.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 12234.
(d) Wang, C.; Tunge, J. A. Org. Lett. 2006, 8, 3211. (e) Han, R.-G.; Wang,
Y.; Li, Y.-Y.; Xu, P.-F. AdV. Synth. Catal. 2008, 350, 1474. (f) Sarkar, N.;
Med. Chem. Lett. 2007, 17, 3769
(3) (a) Lei, A.; Chen, M.; He, M.; Zhang, X. Eur. J. Org. Chem. 2006,
4343. (b) Szo¨llo¨si, G.; Szo¨ri, K.; Barto´k, M. J. Catal. 2008, 256, 349
.
Banerjee, A.; Nelson, S. G. J. Am. Chem. Soc. 2008, 130, 9222
(6) For a review on piperidine synthesis, see: Weintraub, P. M.; Sabol,
J. S.; Kane, J. M.; Borcherding, D. R. Tetrahedron 2003, 59, 2953
.
.
.
10.1021/ol802569q CCC: $40.75
Published on Web 12/10/2008
2009 American Chemical Society