In this work, the metalation of E-vinyl iodide 8 with n-BuLi,
followed by trapping of the resulting anion with hexameth-
ylcyclotrisiloxane (D3) or chloromethylsilacyclobutane, un-
eventfully afforded silanol 5b and siletane 5c in yields of
80% and 86%, respectively (Scheme 2). Surprisingly,
however, failure met attempts to trap this vinyl anion with
benzyldimethylchlorosilane or diisopropylchlorosilane to
obtain silanes 5d and 5e, and it was similarly impossible to
obtain any of the cis-silanes 6 by applying Method C to cis-
vinyl iodide 10. In all these cases of failure, the inability of
the anions that were generated to trap the silicon electrophile
resulted in the main reaction product after workup being the
terminal alkene 9 (Scheme 3).
Scheme 3. Synthesis of (1Z,3E)-Dienylsilanes 6
In view of the apparent impossibility of preparing cis-
silanes 6 by means of one-step protocols, we turned to a
two-step sequence based on the cis-selective reduction of
the corresponding 1-alkynylsilane precursors (Method D).18
Gratifyingly, the precursors required for 6c-e, alkynylsilanes
11c-e were obtained uneventfully by metalation of enyne
7 and anion trapping with chloromethylsilacyclobutane,
benzyldimethylchlorosilane, or chlorodiisopropylsilane; sub-
sequent reaction with Cp2Zr(H)Cl19 and pentane afforded
the desired coupling partners 6c-e in yields of 77, 76, and
58%, respectively (Scheme 3). Unfortunately, the method
could not be applicable to the preparation of 6a-b because
of the unavailability of the required silicon electrophile and
the instability of the alkynylsilane precursor, respectively.
With the organosilicon reagents 5a-e and 6c-e in hand,
we investigated the Hiyama cross-coupling reactions. Ad-
dition of TBAF (1.0 M in THF, 2-3 equiv) to a solution of
5 or 6 (1.5-2.5 equiv) in THF, followed by stirring for 30
min at rt, sequential addition of trienyl iodide 3 and
Pd2(dba)3.CHCl3 (0.05-0.1 equiv) and stirring for a further
1-4 h, afforded retinyl ethers 12 and 13 as pure isomers in
yields that in most cases were in the range 75-90% (Scheme
We therefore turned our attention to Method B. Although
the cross-coupling reaction of organic halides to a silicon
source (disilanes, monohydrosilanes, or dihydrosilanes), using
Pd, Rh, or Pt complexes as catalysts, has proven to be a
useful route to functionalized arylsilanes,15 only two in-
stances of its use for silicon-alkenyl-carbon bond formation
have been reported to date:16 Hiyama prepared vinyl- and
dienylsilanes by coupling the corresponding halides to
hexamethyldisilane under TASF-promoted Pd(0) catalysis;
and Masuda reported the efficient coupling of alkenyl iodides
to hydrosilanes using Pd2dba3.CHCl3 as catalyst, KOAc as
base, and amide solvents (NMP). Discourangingly, in the
present work, neither of these protocols allowed the prepara-
tion of silanes 6 from iodide 10 or of silanes 5 from iodide
8 (Schemes 2 and 3), affording only starting materials or
complex reaction mixtures.
(12) (a) Chandra, G.; Lo, P. Y.; Hitchcock, P. B.; Lappert, M. F.
Organometallics 1987, 6, 191. (b) Denmark, S. E.; Wang, Z. Org. Lett.
2001, 3, 1073.
The reaction of silicon electrophiles with organo-lithium
or organomagnesium reagents (Method C) is a classical
means of obtaining access to organosilicon compounds.17
(13) Denmark, S. E.; Kallemeyn, J. M. Org. Lett. 2003, 5, 3483.
(14) Possibly through isomerization of initially produced Z-isomers, via
an insertion-ꢀ-elimination mechanism, in the presence of a catalytic amount
of hydrosilane and the Rh catalyst. See: Mori, A.; Takahisa, E.; Nishihara,
Y.; Hiyama, T. Can. J. Chem. 2001, 79, 1522.
(6) Spivey, A. C.; Gripton, C. J. G.; Hannah, J. P. Curr. Org. Synth.
2004, 1, 211.
(7) (a) Lo´pez, S.; Rodríguez, V.; Montenegro, J.; Saa´, C.; Alvarez, R.;
Lo´pez, C. S.; de Lera, A. R.; Simo´n, R.; Lazarova, T.; Padro´s, E.
Chembiochem 2005, 6, 2078. (b) Silva, C.; Nieto, O.; Lo´pez, S.; de Lera,
A. R. J. Comput. Chem. 2006, 27, 116. (c) Lo´pez, S.; Montenegro, J.; Saa´,
C. J. Org. Chem. 2007, 72, 9572.
(15) Some significant references: Pd (hydrosilanes): (a) Murata, M.;
Suzuki, K.; Watanabe, S.; Masuda, Y. J. Org. Chem. 1997, 62, 8569. (b)
Manoso, A. S.; DeShong, P. J. Org. Chem. 2001, 66, 7449. (c) Yamanoi,
Y. J. Org. Chem. 2005, 70, 9607. Pd (dihydrosilanes): (d) Yamanoi, Y.;
Taira, T.; Sato, J.; Nakamula, I.; Nishihara, H. Org. Lett. 2007, 9, 4543. Pd
(disilanes): (e) Matsumoto, H.; Nagashima, S.; Kato, T.; Nagai, Y. Angew.
Chem., Int. Ed. Engl. 1978, 17, 279. (f) See ref 13. Rh catalyst: (g) Murata,
M.; Ishikura, M.; Nagata, M.; Watanabe, S.; Masuda, Y. Org. Lett. 2002,
4, 1843. (h) Yamanoi, Y.; Nishihara, H. Tetrahedron Lett. 2006, 47, 7157.
(i) Murata, M.; Yamasaki, H.; Ueta, T.; Nagata, M.; Ishikura, M.; Watanabe,
S.; Masuda, Y. Tetrahedron 2007, 63, 4087. Pt catalyst: (j) Hamze, A.;
Provot, O.; Alami, M.; Brion, J.-D. Org. Lett. 2006, 8, 931.
(8) (a) Ojima, I. In The Chemistry of Organic Silicon Compounds; Patai,
S., Rappoport, Z., Eds.; John Wiley: Chichester, 1989; p 1479. (b) Hiyama,
T.; Kusumoto, T. In ComprehensiVe Organic Synthesis; Trost, B. M.,
Flemming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 8, p 763. (c) Ojima,
I.; Li., Z.; Zhu, J. In The Chemistry of Organic Silicon Compounds;
Rappoport, Z., Apeloig, Y., Eds.; Wiley: New York, 1998; p 1687.
(9) For a recent example of tunable selectivity using rhodium catalysts,
see: Faller, J. W.; D’Alliessi, D. G. Organometallics 2002, 21, 1743.
(10) (a) Mori, A.; Takahisa, E.; Kajiro, H.; Hirabayashi, K.; Nishihara,
Y.; Hiyama, T. Chem. Lett. 1998, 443. (b) Mori, A.; Takahisa, E.; Kajiro,
H.; Nishihara, Y.; Hiyama, T. Polyhedron 2000, 19, 567. (c) Mori, A.;
Takahisa, E.; Kajiro, H.; Nishihara, Y.; Hiyama, T. Macromolecules 2000,
33, 1115. (d) Mori, A.; Takahisa, E.; Yamamura, Y.; Kato, T.; Mudalige,
A. P.; Kajiro, H.; Hirabayashi, K.; Nishihara, Y.; Hiyama, T. Organome-
tallics 2004, 23, 1755.
(16) (a) Hatanaka, Y.; Hiyama, T. Tetrahedron Lett. 1987, 28, 4715.
(b) Murata, M.; Watanabe, S.; Masuda, Y. Tetrahedron Lett. 1999, 40, 9255.
(17) (a) Sieburth, S. M.; Fensterbank, L. J. Org. Chem. 1993, 58, 6314.
(b) Denmark, S. E.; Wehrli, D. Org. Lett. 2000, 2, 565. (c) Denmark, S. E.;
Neuville, L. Org. Lett. 2000, 2, 3221. (d) Denmark, S. E.; Pan, W. J.
Organomet. Chem. 2002, 653, 98. (e) Morrill, C.; Mani, N. S. Org. Lett.
2007, 9, 1505.
(18) (a) Denmark, S. E.; Choi, J. Y. J. Am. Chem. Soc. 1999, 121, 5821.
(b) Trost, B. M.; Frederiksen, M. U.; Papillon, J. P. N.; Harrington, P. E.;
Shin, S.; Shireman, B. T. J. Am. Chem. Soc. 2005, 127, 3666.
(19) Reduction of alkynylboronates and stannanes with Schwartz’s
reagent has been reported, for example, in ref 7c.
(11) Ru-catalyzed stereodivergent hydrosilylation has also been reported,
but mainly in relation to arylvinylsilanes. See: Katayama, H.; Taniguchi,
K.; Kobayashi, M.; Sagawa, T.; Minami, T.; Ozawa, F. J. Organomet. Chem.
2002, 645, 192.
Org. Lett., Vol. 11, No. 1, 2009
143