SCHEME 1
Palladium-Catalyzed Markovnikov Terminal
Arylalkynes Hydrostannation: Application to the
Synthesis of 1,1-Diarylethylenes
Abdallah Hamze, Damien Veau, Olivier Provot,
Jean-Daniel Brion, and Mouaˆd Alami*
Laboratoire de Chimie The´rapeutique, Faculte´ de Pharmacie,
UniVersite Paris-Sud, CNRS, BioCIS, UMR 8076, rue J. B.
Cle´ment, Chaˆtenay-Malabry, F-92296, France
one hand, the cine substitution4 constitutes a major limitation
which is most frequently encountered in the Stille coupling of
sterically encumbered 1-substituted vinylstannanes of type 2.
Additionally, there are no available procedures for effecting this
coupling in good yield. On the other hand, the literature methods
for the synthesis of R-styryltributyltin5 2 from 3 afforded a
mixture of regioisomeric vinylstannanes which resist chromato-
graphic separation.6 Consequently, the regiochemical control
of the hydrostannation of terminal arylalkynes 3 has remained
a prominent unanswered synthetic challenge. In the present
work, these problems have been overcome.
ReceiVed October 8, 2008
Previously, we reported the effect of ortho substituents on
the regioselectivity in the transition-metal (Pd, Pt)-catalyzed
hydrostannation7 and hydrosilylation8 of aryl-substituted alkynes
and related compounds.9 In the case of internal arylalkynes, such
as diarylalkynes and aliphatic arylalkynes, we demonstrated that
the presence of an ortho substituent on arylalkynes promoted a
highly regioselective addition of the metal hydride to the triple
bond, regardless of the electronic nature of the substituent (π-
electron-withdrawing or σ-electron-donating group). Thus, the
hydrometalation formed a single product where the metal moiety
(SnBu3, SiR3) was delivered to the carbon proximal to the ortho-
substituted aryl nucleus. Encouraged by these results, we
envisioned to extend this ortho-directing effect (ODE) to
terminal arylalkynes 3 in order to provide R-branched vinylmetal
species of type 2, suitable for the synthesis of 1,1-diarylethenes
1. In the case of the Pt-catalyzed hydrosilylation of terminal
The palladium-catalyzed hydrostannation of terminal aryla-
lkynes was achieved. The regioselectivity of the H-Sn bond
addition across the triple bond was found to be controlled
by an ortho substituent on the aromatic ring, whatever its
electronic nature, to give exclusively R-branched vinylstan-
nanes 2 in accordance with Markovnikov’s rule. Subsequent
Stille cross-coupling reaction of 2 with a variety of aryl
halides readily provided, in moderate to good yields, a family
of functionalized 1,1-diarylethylenes 1.
1,1-Diarylethylenes 1, an important structural motif found
in biologically active compounds,1 can, in principle, be accessed2
from terminal arylalkynes 3 via Stille cross-coupling reaction
between intermediates 2 and aryl halides (Scheme 1).3 In this
strategy, two synthetic challenges remain to be solved. On the
(4) When styrylstannanes are coupled with aryl halides, a reversal of
regioselectivity is often observed with formation of (Z)- and (E)-cine substitution
regioisomers. (a) Stork, G.; Isaacs, R. C. A. J. Am. Chem. Soc. 1990, 112, 7399–
7400. (b) Levin, J. I. Tetrahedron Lett. 1993, 34, 6211–6214. (c) Quayle, P.;
Wang, J.; Xu, J.; Urch, C. J. Tetrahedron Lett. 1998, 39, 489–492. (d) Flohr, A.
Tetrahedron Lett. 1998, 39, 5177–5180. (e) Fillion, E.; Taylor, N. J. J. Am.
Chem. Soc. 2003, 125, 12700–12701, and references therein.
(5) (a) Barlow, A. J.; Compton, B. J.; Weavers, R. T. J. Org. Chem. 2005,
70, 2470–2475. (b) Dodero, V. I.; Liliana, C.; Koll, L. C.; Mandolesi, S. D.;
Podesta´, J. C. J. Organomet. Chem. 2002, 650, 173–180. (c) Jeong, S.; Chen,
X.; Harran, P. G. J. Org. Chem. 1998, 63, 8640–8641.
(6) (a) Zhang, H. X.; Guibe´, F.; Balavoine, G. J. Org. Chem. 1990, 55, 1857–
1867. (b) Kikukawa, K.; Umekawa, H.; Wada, F.; Matsuda, T. Chem. Lett. 1988,
881–884. (c) Miyake, H.; Yamamura, K. Chem. Lett. 1989, 981–984. (d) Darwish,
A.; Lang, A.; Kim, T.; Chong, J. M. Org. Lett. 2008, 10, 861–864. For excellent
reviews, see also: (e) Smith, N. D.; Mancuso, J.; Lautens, M. Chem. ReV. 2000,
100, 3257–3282. (f) Trost, B. M.; Ball, Z. T. Synthesis 2005, 853–887.
(7) (a) Liron, F.; Le Garrec, P.; Alami, M. Synlett 1999, 246–248. (b) Alami,
M.; Liron, F.; Gervais, M.; Peyrat, J.-F.; Brion, J.-D. Angew. Chem., Int. Ed.
2002, 41, 1578–1580.
(1) (a) Boehm, M. F.; Zhang, L.; Badea, B. A.; White, S. K.; Mais, D. E.;
Berger, E.; Suto, C. M.; Goldman, M. E.; Heyman, R. A. J. Med. Chem. 1994,
37, 2930–2941. (b) Faul, M. M.; Ratz, A. M.; Sullivan, K. A.; Trankle, W. G.;
Winneroski, L. L. J. Org. Chem. 2001, 66, 5772–5782. (c) Canan Koch, S. S.;
Dardashti, L. J.; Cesario, R. M.; Croston, G. E.; Boehm, M. F.; Heyman, R. A.;
Nadzan, A. M. J. Med. Chem. 1999, 42, 742–750. (d) Shankar, B. B.; Lavey,
B. J.; Zhou, G.; Spitler, J. A.; Tong, L.; Rizvi, R.; Yang, D.-Y.; Wolin, R.;
Kozlowski, J. A.; Shih, N.-Y.; Wu, J.; Hipkin, R. W.; Gonsiorek, W.; Lunn,
C. A. Bioorg. Med. Chem. Lett. 2005, 15, 4417–4420. (e) Stachel, S. J.; Coburn,
C. A.; Steele, T. G.; Crouthamel, M.-C.; Pietrak, B. L.; Lai, M.-T.; Holloway,
M. K.; Munshi, S. K.; Graham, S. L.; Vacca, J. P. Bioorg. Med. Chem. Lett.
2006, 16, 641–644.
(2) For the coupling of alkenyl phosphates with aromatic boronic acids under
Ni catalysis, see: (a) Hansen, A. L.; Ebran, J.-P.; Gøgsig, T. M.; Skrydstrup, T.
J. Org. Chem. 2007, 72, 6464–6472. For the coupling of alkenyl sulfides with
Grignard reagents under Ni catalysis, see: (b) Sabarre, A.; Love, J. Org. Lett.
2008, 10, 3941–3944.
(3) (a) Kikukawa, K.; Umekawa, H.; Matsuda, T. J. Organomet. Chem. 1986,
311, C44–C46. (b) Chen, S. H. Tetrahedron Lett. 1997, 38, 4741–4744. (c)
Belema, M.; Nguyen, V. N.; Zusi, F. C. Tetrahedron Lett. 2004, 45, 1693–
1697.
(8) (a) Hamze, A.; Provot, O.; Alami, M.; Brion, J.-D. Org. Lett. 2005, 7,
5625–5628. (b) Hamze, A.; Provot, O.; Brion, J.-D.; Alami, M. Synthesis 2007,
2025–2036. (c) Giraud, A.; Provot, O.; Hamze, A.; Brion, J.-D.; Alami, M.
Tetrahedron Lett. 2008, 49, 1107–1110.
(9) For the palladium-catalyzed hydrostannation of enyne and enediyne
derivatives, see: (a) Alami, M.; Ferri, F. Synlett 1996, 755–756. (b) Ferri, F.;
Alami, M. Tetrahedron Lett. 1996, 37, 7971–7974. (c) Bujard, M.; Ferri, F.;
Alami, M. Tetrahedron Lett. 1998, 39, 4243–4246. (d) Hamze, A.; Provot, O.;
Brion, J.-D.; Alami, M. J. Org. Chem. 2007, 72, 3868–3874.
10.1021/jo802460z CCC: $40.75
Published on Web 12/10/2008
2009 American Chemical Society
J. Org. Chem. 2009, 74, 1337–1340 1337