D
V. Y. Shuvalov et al.
Letter
Synlett
Supporting Information
Supporting information for this article is available online at
S
u
p
p
orit
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
References and Notes
(1) (a) Lai, T. K.; Chatterjee, A.; Banerji, J.; Sarkar, D.;
Chattopadhyay, N. Helv. Chim. Acta 2008, 91, 1975. (b) Gamo, F.-
J.; Sanz, L. M.; Vidal, J.; de Cozar, C.; Alvarez, E.; Lavandera, J.-L.;
Vanderwall, D. E.; Green, D. V. S.; Kumar, V.; Hasan, A.; Brown, J.
R.; Peishoff, C. E.; Cardon, L. R.; Garcia-Bustos, J. F. Nature 2010,
465, 305.
(2) (a) Denisov, E. T.; Solodova, S. L.; Denisova, T. G. Russ. Chem. Rev.
2010, 79, 981. (b) Wiesner, J.; Ortman, R.; Jomaa, H.; Schlitzer,
M. Angew. Chem. Int. Ed. 2003, 42, 5274; Angew. Chem. 2003,
115, 5432.
Figure 2 Normalized absorption and fluorescence spectra of dilute
solutions of compounds 4a–f in EtOH
The absorption spectra of -carbolines 7a–p, recorded
under the same conditions, showed two main bands at
261–264 and 311–316 nm. The band in the long-wave-
length region of the spectrum had a shoulder, which was
most pronounced for compounds 7a–d, which contain no
substituents on the benzene core. In the case of the me-
thoxy-substituted derivatives 7i–l, the shoulder overlapped
with the main band to give a broad signal with a maximum
at 316–330 nm. The molar attenuation coefficients for
compounds 7a–p were in the range 14.6 × 103 to 20.3 × 103
L × mol−1 × cm−1 (Table S2 in the SI).
A comparison of the absorption spectra of tetra-, hexa-,
nona-, and decamethylene-substituted -carbolines
showed that the positions of the absorption maxima for
compounds 7a–d (261, 311–312 nm), 7e–h (262–264, 315–
323 nm), 7i–l (264, 323–330 nm), and 7m–p (263–264,
314–316 nm) do not depend on the size of the methylene
chain. Upon excitation with UV light, ethanolic solutions of
compounds 7a–p produced a strong photoluminescence,
emitting blue light (368–389 nm) with a quantum yield of
0.11–0.54. Introduction of the methoxy group to the C(7)
atom of the benzene ring of compounds 7i–l led to an in-
crease in the quantum yield (0.45–0.54) and to a hyp-
sochromic shift (maxem = 368–372 nm) in the luminescence
spectrum. For the chlorine-substituted carbolines 7m–p, a
hypsochromic shift was also observed (maxem = 369–373
nm); however, the quantum yield decreased (0.11–0.12).
In summary, we have developed, for the first time, a cat-
alytic two-step synthesis of substituted -carbolines14 and
a three-step synthesis of quindoline alkaloid from available
starting compounds. We also studied the photophysical
properties of the products and we revealed a structure–
property relationship.
(3) Tu, Y. Angew. Chem. Int. Ed. 2016, 55, 10210; Angew. Chem. 2016,
128, 10366.
(4) Kumar, A.; Katiyar, S. B.; Agarwal, A.; Chauhan, P. M. Curr. Med.
Chem. 2003, 10, 1137.
(5) (a) Andriantsoanirina, V.; Ratsimbasoa, A.; Bouchier, C.;
Jahevitra,
M.;
Rabearimanana,
S.;
Radrianjafy,
R.;
Andrianaranjaka, V.; Randriantsoa, T.; Rason, M. A.; Tichit, M.;
Rabarijaona, L. P.; Mercereau-Puijalon, O.; Durand, R.; Ménard,
D. Antimicrob. Agents Chemother. 2009, 53, 4588. (b) Noedl, H.;
Se, Y.; Schaecher, K.; Smith, B. L.; Socheat, D.; Fukuda, M. M. N.
Engl. J. Med. 2008, 359, 2619. (c) Ashley, E. A.; Dhorda, M.;
Fairhurst, R. M.; Amaratunga, C.; Lim, P.; Suon, S.; Sreng, S.;
Anderson, J. M.; Mao, S.; Sam, B.; Sopha, C.; Chuor, C. M.; Nguon,
C.; Sovannaroth, S.; Pukrittayakamee, S.; Jittamala, P.;
Chotivanich, K.; Chutasmit, K.; Suchatsoonthorn, C.;
Runcharoen, R.; Hien, T. T.; Thuy-Nhien, N. T.; Thanh, N. V.; Phu,
N. H.; Htut, Y.; Han, K. T.; Aye, K. H.; Mokuolu, O. A.;
Olaosebikan, R. R.; Folaranmi, O. O.; Mayxay, M.; Khanthavong,
M.; Hongvanthong, B.; Newton, P. N.; Onyamboko, M. A.;
Fanello, C. I.; Tshefu, A. K.; Mishra, N.; Valecha, N.; Phyo, A. P.;
Nosten, F.; Yi, P.; Tripura, R.; Borrmann, S.; Bashraheil, M.;
Peshu, J.; Faiz, M. A.; Ghose, A.; Hossain, M. A.; Samad, R.;
Rahman, M. R.; Hasan, M. M.; Islam, A.; Miotto, O.; Amato, R.;
MacInnis, B.; Stalker, J.; Kwiatkowski, D. P.; Bozdech, Z.;
Jeeyapant, A.; Cheah, P. Y.; Sakulthaew, T.; Chalk, J.; Intharabut,
B.; Silamut, K.; Lee, S. J.; Vihokhern, B.; Kunasol, C.; Imwong, M.;
Tarning, J.; Taylor, W. J.; Yeung, S.; Woodrow, C. J.; Flegg, J. A.;
Das, D.; Smith, J.; Venkatesan, M.; Plowe, C. V.; Stepniewska, K.;
Guerin, P. J.; Dondorp, A. M.; Day, N. P.; White, N. J. N. Engl.
J. Med. 2014, 371, 411.
(6) Le Bras, J.; Durand, R. Fundam. Clin. Pharmacol. 2003, 17, 147.
(7) (a) Grellier, P.; Ramiaramanana, L.; Millerioux, V.; Deharo, E.;
Schrevel, J.; Frappier, F.; Trigalo, F.; Bodo, B.; Pousset, J.-L. Phyto-
ther. Res. 1996, 10, 317. (b) Cimanga, K.; De Bruyne, T.; Pieters,
L.; Vlietinck, A. J.; Turger, C. A. J. Nat. Prod. 1997, 60, 688.
(8) (a) Dassonneville, L.; Bonjean, K.; De Pauw-Gillet, M.-C.; Colson,
P.; Houssier, C.; Quetin-Leclercq, J.; Angenot, L.; Bailly, C. Bio-
chemistry 1999, 38, 7719. (b) Kumar, E. V. K. S.; Etukala, J. R.;
Ablordeppey, S. Y. Mini-Rev. Med. Chem. 2008, 8, 538.
(c) Lavrado, J.; Moreira, R.; Paulo, A. Curr. Med. Chem. 2010, 17,
2348. (d) Wang, W.; Yin, R.; Zhang, M.; Yu, R.; Hao, C.; Zhang, L.;
Jiang, T. J. Med. Chem. 2017, 60, 2840. (e) Wright, C. W.; Addae-
Kyereme, J.; Breen, A. G.; Brown, J. E.; Cox, M. F.; Croft, S. L.;
Gökçek, Y.; Kendrick, H.; Phillips, R. M.; Pollet, P. L. J. Med. Chem.
2001, 44, 3187.
Funding Information
This work was financially supported by the Russian Foundation for
Basic Research and Ministry of Education of Omsk Region (grant 16-
43-550144/16 r_a) and the Ministry of Education and Science of the
Russian Federation (the project 4.1657.2017/4.6).
R
u
si
a
n
F
o
u
n
d
ati
o
n
for
B
asi
c
R
esearc
h
a
n
d
M
i
n
i
stryof
E
d
u
c
ati
o
n
of
O
msk
R
e
g
i
o
n
(16-43-5
5
0
1
4
4/1
6
r_a)M
i
n
i
stryof
E
d
u
c
ati
o
n
a
n
d
S
c
i
e
n
c
e
ofth
e
R
u
si
a
n
F
e
d
erati
o
n
(4.1
6
5
7
.
2
0
1
7/4.6)
© Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, A–E