[(CD3)2SO] d 1.85 (s, 3H), 2.9 (t, 4 H, J = 5 Hz,), 3.3 (ABX,
2H), 3.7 (m, 1H), 3.75 (t, 4H, J = 5 Hz), 4.1 (t, 1H, J = 9 Hz), 4.7
(m, 1H), 7.2 (d, 1H, J = 9 Hz), 7.5 (dd, 1H, J = 2.5, 9 Hz), 8.1
(d, 1H, J = 2.5 Hz), 8.2 (t, 1H, J = 6 Hz); C NMR [(CD3)2SO]
d 22.8 (CH3), 40.4 (CH2),47.7 (CH2), 52.9 (2 CH2), 66.8 (2 CH2),
71.9 (CH), 98.6 (CI), 119.5 (CH), 121.4 (CH), 129.3 (CH), 133.4,
137.8, 152.5, 154.4, 171.0.
Catalysts, Wiley, Chichester, 2004J. Tsuji, in Transition Metal Reagents
and Catalysts, Wiley, Chichester, 2000; D. A. Culkin and J. F. Hartwig,
Acc. Chem. Res., 2003, 36, 234; I. P. Beletskaya and A. V. Cheprakov,
Chem. Rev., 2000, 100, 3009.
5 R. A. Rossi and R. H. De Rossi, Aromatic Substitution by the SRN
Mechanism, Am. Chem. Soc., Washington, 1983.
6 R. A. Rossi and A. B. Penenory, in Handbook of Organic Photochemistry
and Photobiology, ed. W. Horspool and P. S. Song, CRC Press, Boca
Raton, 2nd edn, 2004, ch. 47.
1
7 M. T. Baumgarter, A. B. Pierini and R. A. Rossi, J. Org. Chem., 1999,
(S)-3-[3¢-(2-Pyrrolyl)-4¢-(N-morpholino)phenyl]-5-(N-acetamido-
methyl)-oxazolidin-2-one (10). Colorless solid, mp 56–58 ◦C;
elemental analysis C 62.4, H 6.3, N 14.9, C20H24N4O4 requires
C 62.49, H 6.29, N 14.57%; IR (nujol) n 1740 cm-1; H NMR
(CD3OH) d 1.9 (s, 3H), 2.8 (t, 4H, J = 5 Hz,), 3.5 (ABX, 2H), 3.8
(m, 1H), 3.8 (t, 4H, J = 5 Hz), 4.1 (t, 1H, J = 9 Hz), 4.7 (m, 1H),
6.2 (t, 1H, J = 2 Hz), 6.5 (dd, 1H, J = 2, 3.5 Hz), 6.9 (dd, 1H, J =
2, 3.5 Hz), 7.1 (d, 1H, J = 9 Hz), 7.3 (dd, 1H, J = 3, 9 Hz), 7.6 (d,
1H, J = 3 Hz); C NMR (CD3OH) d 22.8 (CH3), 43.5 (CH2), 49.8
(CH2), 53.8 (2 CH2), 68.4 (2 CH2), 73.7 (CH), 108.5 (CH), 109.8
(CH), 118.0 (CH), 118.8 (CH), 120.1 (CH), 121.1 (CH), 129.4,
131.3, 135.8, 146.7, 157.2, 174.0.
64, 6487.
8 M. Freccero, E. Fasani, M. Mella, I. Manet, S. Monti and A. Albini,
Eur. J. Chem., 2008, 14, 653.
9 J. Cornelisse, G. Lodder and E. Havinga, Rev. Chem. Intermed., 1979,
2, 231; S. Nilson, Acta Chem. Scand., 1973, 27, 329.
10 S. Monti, S. Sortino, E. Fasani and A. Albini, Chem.–Eur. J., 2001, 7,
2185; E. Fasani, F. F. Barberis Negra, M. Mella, S. Monti and A. Albini,
J. Org. Chem., 1999, 64, 5388; A. Albini and S. Monti, Chem. Soc. Rev.,
2003, 32, 238; L. J. Martinez, G. Li and C. F. Chignell, Photochem.
Photobiol., 1997, 65, 599; J. Claridge Navaratnam, Photochem. Photo-
biol., 2000, 72, 283; M. C. Cuquerella, F. Bosca` and M. A. Miranda,
J. Org. Chem., 2004, 69, 7256; G. Condorelli, G. De Guidi, S. Giuffrida,
S. Sortino, R. Chillemi and S. Sciuto, Photochem. Photobiol., 1999, 70,
280; S. Monti, S. Sortino, E. Fasani and A. Albini, Chem.–Eur. J., 2001,
7, 2185.
11 M. R. Barbachyn and C. W. Ford, Angew. Chem., 2003, 115, 2056;
M. R. Barbachyn and C. W. Ford, Angew. Chem., Int. Ed., 2003, 42,
2010; J. F. Barrett, Curr. Opin. Investig. Drugs, 2000, 1, 181.
12 G. E. Martin, R. H. Robins, P. B. Bowman, W. K. Duholke, K. A.
Farley, B. D. Kaluzny, J. E. Guido, S. M. Sims, T. J. Thamann, B. E.
Thompson, T. Nishimura, Y. Noro and T. Tahara, J. Heterocycl. Chem.,
1999, 36, 265.
13 B. Guizzardi, M. Mella, M. Fagnoni, M. Freccero and A. Albini, J. Org.
Chem., 2001, 66, 6353.
14 F. D. Lewis and W. Liu, J. Phys. Chem. A, 1999, 103, 9678; D. A. Tasis,
M. G. Siskos, A. K. Zarkadis, S. Steenken and G. Pistolis, J. Org. Chem.,
2000, 65, 4274.
N-(2-Hydroxyphenyl)-morpholine (11).35 Colorless solid, mp
130 ◦C; elemental analysis C 66.5, H 7.4, N 7.4, C10H13NO2
requires C 67.02, H 7.31, N 7.82%; IR (nujol) n ca. 3000 (br),
1454 cm-1; H NMR (CDCl3) d 3.0 (t, 4H, J = 5 Hz), 3.95 (t, 4H,
J = 5 Hz), 6.9 (dt, 1H, J = 7.5, 1.5), 7.0 (dd, 1H, J = 1.5, 7.5), 7.1
(dt, 1H, J = 1, 7.5), 7.2 (dd, 1H, J = 1, 7.5); C NMR (CDCl3) d
52.7 (2 CH2), 66.5 (2 CH2), 114.2 (CH), 120.1 (CH), 121.3 (CH),
126.6 (CH), 138.6, 151.4.
15 K. Othmen, P. Boule, B. Szczepanik, K. Rotkiewicz and G. Grabner,
J. Phys. Chem. A, 2000, 104, 9525.
Quantum yield measurements
16 K. Othmen and P. Boule, J. Photochem. Photobiol. A: Chem., 2000,
136, 79.
Reaction quantum yields were measured by irradiating 2 mL
samples of 5 ¥ 10-4 M solutions of either 1 or 2 in a quartz
spectrophotometric cuvette on an optical bench. The light source
was a collimated beam from a 100 W high-pressure mercury arc
fitted with an interference filter (transmittance maximum, 280 nm).
The reaction was monitored by HPLC and the consumption
of the starting material (limited to <20%) was determined (a
known volume—20 ml—injection loop was used). The light flux
was measured by ferrioxalate actinometry. Fluorescence quantum
yields were measured by using quinine sulfate as the standard
(UF = 0.54).
17 P. Maruthamuthu, L. Venkatasubramanian and P. Dharmalingam,
J. Chem. Soc., Faraday Trans. 1, 1986, 82, 359; S. Nakayama and K.
Suzuki, Bull. Chem. Soc. Jpn., 1973, 46, 3694; A. Bewick, D. Serve
and T. A. Joslin, J. Electroanal. Chem. Int. Electrochem., 1983, 154,
81; H. Takemura, K. Takehara and M. Ata, Eur. J. Org. Chem., 2004,
4936.
18 K. Le Gall, J. P. Hurvois, T. Renaud, C. Moinet, A. TAllec, P. Uriac, T.
Sinbandhit and L. Toupet, Liebig Ann. Chem., 1997, 2089.
19 Y. Cao, K. Suzuki, T. Tajima and T. Fuchigami, Tetrahedron, 2005, 61,
6855.
20 M. Freccero, M. Fagnoni and A. Albini, J. Am. Chem. Soc., 2003, 125,
13182.
21 M. Aschi and J. N. Harvey, J. Chem. Soc., Perkin Trans. 2, 1999,
1059.
22 M. Mella, P. Coppo, B. Guizzardi, M. Fagnoni, M. Freccero and A.
Albini, J. Org. Chem., 2001, 66, 6344.
Acknowledgements
23 S. M. Gasper, C. Devadoss and G. B. Schuster, J. Am. Chem. Soc.,
1995, 117, 5206.
24 (a) T. Morimura, Y. Nobuhara and H. Matsukura, Chem. Pharm. Bull.,
1997, 45, 373; (b) E. Fasani, M. Mella and A. Albini, Eur. J. Org. Chem.,
2004, 5075.
25 D. Narog, V. Lechowicz, T. Pietryga and A. Sobkoviak, J. Mol. Catal.
A: Chem., 2004, 212, 25 and references cited therein.
26 A. Belvedere, F. Bosca`, M. C. Cuquerella, G. De Guidi and M. A.
Miranda, Photochem. Photobiol., 2002, 76, 252.
Partial support of this work by MURST, Rome, is gratefully
acknowledged.
References
1 M. Fagnoni and A. Albini, in Molecular and Supramolecular Photo-
chemistry, ed. V. Ramamurthy and K. S. Schanze, Taylor & Francis,
Boca Raton, 2006, vol. 14, p. 131; J. Cornelisse and E. Havinga,
Chem. Rev., 1975, 75, 353; J. Cornelisse, in Handbook of Organic
Photochemistry and Photobiology, ed. W. Horspool and P. S. Song,
CRC Press, Boca Raton, 1995, p. 250.
2 U. Mazurek and H. Schwarz, Chem. Commun., 2003, 1321; T. Saeki,
Y. Takashima and K. Tamao, Synlett, 2005, 1771; L. Ackermann, R.
Born, J. H. Spatz and D. Meyer, Angew. Chem., Int. Ed., 2005, 7216.
3 M. Fagnoni and A. Albini, Acc. Chem. Res., 2005, 38, 713.
27 (a) G. Zhang and P. Wan, J. Chem. Soc., Chem. Commun., 1994, 19;
(b) N. C. Yang, A. Huang and D. H. Yang, J. Am. Chem. Soc., 1989,
111, 8060.
28 L. Martinez and C. F. Chignell, J. Photochem. Photobiol. B, 1998, 45,
91.
29 H. Agrawal, K. R. Muhadik, K. R. Paradkar and N. Kaul, Drug Dev.
Ind. Pharm., 2003, 29, 1119.
30 S. J. Brickner, D. K. Hutchinson, M. R. Barbachin, P. R. Manninen,
D. A. Ulanowicz, S. A. Garmon, K. C. Grega, S. K. Hendges, D. S.
4 Transition Metals for Organic Synthesis, ed. M. Beller and C. Bolm,
Wiley-VCH, Weinheim, 1998J. Tsuji, in Palladium Reagents and
This journal is
The Royal Society of Chemistry 2008
Org. Biomol. Chem., 2008, 6, 4634–4642 | 4641
©