4
(b) El-Damasy AK, Lee JH, Seo SH, Cho NC, Pae AN, Keum G.
Eur J Med Chem. 2016;115:201-216;
(c) Ma H, Zhuang CL, Xu XG, et al. Eur J Med Chem.
2017;133:174-183;
spontaneously and exothermic (Scheme 3). Subsequently, B
interacted with CDI activated carboxylic acids (C) through the
nucleophilic addition to provide the cyclic intermediate D, which
finally yield the desired product 2.
(d) Shao H, Li XK, Moses MA, et al. J Med Chem. 2018;61:6163-
6177.
5. (a) Shafi S, Alam MM, Mulakayala N, et al. Eur J Med Chem.
2012;49:324-333;
S
Boc-Phe-Pro-OH
NH
O
N
S
O
N
(b) Kharbanda C, Alam MS, Hamid H, et al. Bioorgan Med Chem.
2014;22:5804-5812;
(c) Tariq S, Kamboj P, Alam O, Amir M. Bioorg Chem.
2018;81:630-641.
T H F
C D I
O
5a 6a
)
principal product (
,
T H F
5a
6a
, benzothiazole as reagent, yield: 31%
, thiazole as reagent, yield: 23%
+
6. (a) Maddili SK, Li ZZ, Kannekanti VK, et al. Bioorg Med Chem
Lett. 2018;28:2426-2431;
NH
S
N
N
MgCl.LiCl
+
N
O
S
(b) Haroun M, Tratrat C, Kositzi K, et al. Curr Top Med Chem.
2018;18:75-87;
(c) Zha GF, Leng J, Darshini N, et al. Bioorg Med Chem Lett.
2017;27:3148-3155;
(d) Alborz M, Jarrahpour A, Pournejati R, et al. Eur J Med Chem.
2018;143:283-291.
NH
O
O
O
O
N
O
O
O
N
N
5b 6b
desired product (
,
)
5b
6b
, benzothiazole as reagent, undetected
, thiazole as reagent, undetected
Scheme 2. Reactions with Boc-Phe-Pro-OH as the reagent.
7. (a) Luo B, Li D, Zhang AL, Gao JM. Molecules. 2018;23:2457-
2472;
(b) Zhao SZ, Zhao LY, Zhang XQ, et al. Eur J Med Chem.
2016;123:514-522;
(c) Al-Talib M, Al-Soud YA, Abussaud M, Khshashneh S. Arab J
Chem. 2016;9:S926-S930.
8. (a) Spadaro A, Frotscher M, Hartmann RW. J Med Chem.
2012;55:2469-2473;
S
S
N
MgCl·LiCl
H = -20.89 kcal/mol
G = -20.29 kcal/molhk
+
MgCl·LiCl
N
B
A
1
C
(b) Thanigaimalai P, Konno S, Yamamoto T, et al. Eur J Med
Chem. 2013;65:436-447;
(c) Thanigaimalai P, Konno S, Yamamoto T, et al. Eur J Med
Chem. 2013;68:372-384;
(d) Duchene D, Colombo E, Desilets A, et al. J Med Chem.
2014;57:10198-10204.
O
Cl
S
S
O
O
S
N
N
C
MgCl·LiCl
R
Li
Mg
N
N
N
R
Cl
N
B
R
N
2
D
Scheme 3. Proposed mechanism.
9. Huang T, Sun J, An L, Zhang L, Han C. Bioorg Med Chem Lett.
2016;26:1854-1859.
Conclusion
10. (a) Zhou CY, Garcia-Calvo M, Pinto S, et al. J Med Chem.
2010;53:7251-7263;
In conclusion, we have developed a convenient and efficient
approach for the synthesis of 2-acyl benzothiazoles/thiazoles via
treatment of benzothiazole/thiazole with i-PrMgCl·LiCl,
followed by a reaction with CDI activated carboxylic acids.
Various substituted carboxylic acids effectively provided the
desired products in moderate to excellent yields under mild
reaction conditions. This offers an alternative approach to access
2-acyl benzothiazoles/thiazoles and supplements the acylation
methods of benzothiazole/thiazole. Further exploration of
carbonyl sources and a thorough understanding of the mechanism
of this reaction are underway in our lab.
(b) Tang G, Nikolovska-Coleska Z, Qiu S, Yang CY, Guo J,
Wang S. J Med Chem. 2008;51:717-720;
(c) Spadaro A, Frotscher M, Hartmann RW. J Med Chem.
2012;55:2469-2473;
(d) Wunderlich SH, Knochel P. Chem-Eur J. 2010;16:3304-
3307;
(e) Harn NK, Gramer CJ, Anderson BA. Tetrahedron Lett.
1995;36:9453-9456;
(f) Myllymaki MJ, Saario SM, Kataja AO, et al. J Med Chem.
2007;50:4236-4242;
(g) Zhu XY, Etukala JR, Eyunni SV, Setola V, Roth BL,
Ablordeppey SY. Eur J Med Chem. 2012;53:124-132.
11. (a) Gao Q, Wu X, Jia F, et al. J Org Chem. 2013;78:2792-2797;
(b) Feng Q, Song QL. Adv Synth Catal. 2014;356:2445-2452;
(c) Liu SW, Chen R, Chen H, Deng GJ. Tetrahedron Lett.
2013;54:3838-3841;
Acknowledgments
We are grateful to the Natural Science Foundation of Jiangsu
Province (BK20171184), Jiangsu Planned Projects for
Postdoctoral Research Funds (1701132C), Technology Plan
Projects of Xuzhou (KC17091) and Postgraduate Research &
Practice Innovation Program of Jiangsu Province (KYCX18-
2203).
(d) Yang K, Chen XY, Wang YQ, et al. J Org Chem.
2015;80:11065-11072;
(e) Hua M, Wang CQ, Liu QX, Chen DY, Fu H, Zhou HF.
Heterocycles. 2018;96:1226-1237;
(f) Wu XF, Anbarasan P, Neumann H, Beller M. Angew Chem
Int Edit. 2010;49:7316-7319.
A. Supplementary
References
12. (a) Zhu YP, Jia FC, Liu MC, Wu AX. Org Lett. 2012;14:4414-
4417;
1. (a) Keri RS, Patil MR, Patil SA, Budagumpi S. Eur J Med Chem.
2015;89:207-251;
(b) Tariq S, Kamboj P, Amir M. Arch Pharm (Weinheim).
2019;352:e1800170.
2. Kanie S, Nakai R, Ojika M, Oba Y. Bioorg Chem. 2018;80:223-
229.
3. Day JJ, Neill DL, Xu S, Xian M. Org Lett. 2017;19:3819-3822.
4. (a) Hegde M, Vartak SV, Kavitha CV, et al. Sci Rep-UK.
2017;7:2533-2546;
(b) Fan XS, He Y, Wang YY, Xue ZK, Zhang XY, Wang JJ.
Tetrahedron Lett. 2011;52:899-902;
(c) Jiang J, Zou HX, Dong QZ, et al. J Org Chem. 2016;81:51-
56;
(d) Meng X, Bi XR, Yu CY, et al. Green Chem. 2018;20:4638-
4644;
(e) Mali JK, Mali DA, Telvekar VN. Tetrahedron Lett.
2016;57:2324-2326;