Journal of the American Chemical Society
Page 8 of 10
1
2
3
source. Such interactions could override the proposed binding of
4
5
6
7
8
9
the iminium species (Fig. 4b) and, therefore, lead to opposite en-
antioselectivites. With proline tetrazole 5g, which features an elec-
tron poor aromatic surface, this effect is not detected (∆ee of 47%).
To learn more about these surprising observations, catalysts 5f and
5g were further investigated using other benzothiazolidines. First
benzothiazolidine 13b, which carries a methyl group instead of a
phenyl substituent was tested. With L-thioproline (5f) as catalyst
and 13b as hydride donor, a high ∆ee of 67% is observed, whereas
18% are obtained with 5g. In both cases the expected (S)-product
is formed preferentially inside I again. This supports the notion
that indeed the additional phenyl ring in reducing agent 13a caused
the observed preference for the R-configured product inside the
capsule, since the methyl derivative 13b did not display this effect.
When using the larger naphthyl-benzothiazolidine 13c, the size
limit of capsule I is reached and only very low yields of product are
observed in these cases. The investigations into the benzothiazoli-
dine revealed how subtle non-covalent interactions between the re-
actants and the capsule can lead to complete changes in the optical
activity of the reduction product. Although these modulation ef-
fects are not predictable at this stage, we believe that further inves-
tigations with additional supramolecular structures are justified.
The increased enantiomeric excess observed within capsule I will
be especially helpful in examples of iminium catalysis where no sat-
isfactory enantiocontrol can be achieved with regular solution
chemistry so far.31
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
This work was supported by funding from the Swiss National Science
Foundation as part of the NCCR Molecular Systems Engineering and
the Bayerische Akademie der Wissenschaften (Junges Kolleg). T. M.
B. thanks the National Research Fund, Luxembourg for an AFR fel-
lowship. We thank Dr. Johannes Richers for graphical design.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
1. (a) Mukherjee, S.; Yang, J. W.; Hoffmann, S.; List, B., Chem. Rev.
2007, 107, 5471-5569; (b) Melchiorre, P.; Marigo, M.; Carlone, A.;
Bartoli, G., Angew. Chem. Int. Ed. 2008, 47, 6138-6171; (c) Bertelsen,
S.; Jørgensen, K. A., Chem. Soc. Rev. 2009, 38, 2178-2189; (d) Matos
Paz, B.; Jiang, H.; Jørgensen, K. A., Chem. Eur. J. 2015, 21, 1846-1853.
2. (a) Erkkilä, A.; Majander, I.; Pihko, P. M., Chem. Rev. 2007, 107,
5416-5470; (b) Mahlau, M.; List, B., Angew. Chem. Int. Ed. 2013, 52,
518-533.
3. List, B.; Lerner, R. A.; Barbas, C. F., J. Am. Chem. Soc. 2000, 122,
2395-2396.
4. Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C., J. Am. Chem. Soc.
2000, 122, 4243-4244.
5. Berryman, O. B.; Sather, A. C.; Lledó, A.; Rebek, J., Angew. Chem. Int.
Ed. 2011, 50, 9400-9403.
6. (a) Blanco, V.; Carlone, A.; Hänni, K. D.; Leigh, D. A.; Lewandowski,
B., Angew. Chem. Int. Ed. 2012, 51, 5166-5169; (b) Blanco, V.; Leigh,
D. A.; Lewandowska, U.; Lewandowski, B.; Marcos, V., J. Am. Chem.
Soc. 2014, 136, 15775-15780; (c) Blanco, V.; Leigh, D. A.; Marcos, V.;
Morales-Serna, J. A.; Nussbaumer, A. L., J. Am. Chem. Soc. 2014, 136,
4905-4908; (d) Beswick, J.; Blanco, V.; De Bo, G.; Leigh, D. A.;
Lewandowska, U.; Lewandowski, B.; Mishiro, K., Chem. Sci. 2015, 6,
140-143; (e) Cakmak, Y.; Erbas-Cakmak, S.; Leigh, D. A., J. Am.
Chem. Soc. 2016, 138, 1749-1751; (f) Eichstaedt, K.; Jaramillo-
Garcia, J.; Leigh, D. A.; Marcos, V.; Pisano, S.; Singleton, T. A., J. Am.
Chem. Soc. 2017, 139, 9376-9381.
7. Kwan, C.-S.; Chan, A. S. C.; Leung, K. C.-F., Org. Lett. 2016, 18, 976-
979.
8. Dong, V. M.; Fiedler, D.; Carl, B.; Bergman, R. G.; Raymond, K. N., J.
Am. Chem. Soc. 2006, 128, 14464-14465.
9. Bräuer, T. M.; Zhang, Q.; Tiefenbacher, K., Angew. Chem. Int. Ed.
2016, 55, 7698-7701.
10. (a) Vriezema, D. M.; Comellas Aragonès, M.; Elemans, J. A. A. W.;
Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M., Chem. Rev. 2005,
105, 1445-1490; (b) Koblenz, T. S.; Wassenaar, J.; Reek, J. N. H.,
Chem. Soc. Rev. 2008, 37, 247-262; (c) Yoshizawa, M.; Klosterman, J.
K.; Fujita, M., Angew. Chem. Int. Ed. 2009, 48, 3418-3438; (d)
Meeuwissen, J.; Reek, J. N. H., Nat. Chem. 2010, 2, 615-621; (e)
Marchetti, L.; Levine, M., ACS Catal. 2011, 1, 1090-1118; (f)
Wiester, M. J.; Ulmann, P. A.; Mirkin, C. A., Angew. Chem. Int. Ed.
2011, 50, 114-137; (g) Raynal, M.; Ballester, P.; Vidal-Ferran, A.; van
Leeuwen, P. W. N. M., Chem. Soc. Rev. 2014, 43, 1734-1787; (h)
Brown, C. J.; Toste, F. D.; Bergman, R. G.; Raymond, K. N., Chem.
Rev. 2015, 115, 3012-3035; (i) Leenders, S. H. A. M.; Gramage-Doria,
R.; de Bruin, B.; Reek, J. N. H., Chem. Soc. Rev. 2015, 44, 433-448; (j)
Zarra, S.; Wood, D. M.; Roberts, D. A.; Nitschke, J. R., Chem. Soc. Rev.
2015, 44, 419-432; (k) Catti, L.; Zhang, Q.; Tiefenbacher, K.,
Synthesis 2016, 48, 313-328; (l) Otte, M., ACS Catal. 2016, 6, 6491-
6510.
Conclusion
In summary, detailed investigations into the first example of imin-
ium catalysis inside a supramolecular host are described. The dif-
ferences in influencing enamine and iminium catalyzed reactions
inside capsule I were explored. Several control experiments were
performed and provided strong evidence that the modulation of
enantiomeric excess of the reaction product indeed stems from a
reaction on the inside of capsule I. The origin of the increased en-
antioselectivity in the capsule was explored. Failure of the related
capsule II to provide a similar effect, likely stems from its inability
to encapsulate ion pairs. Furthermore, the substrate scope of the
reduction with Hantzsch ester was explored. The best enantiose-
lectivities were observed with ortho-substituted derivatives. Ki-
netic investigations, as well as the kinetic isotope effect measured
confirmed that the hydride delivery to the substrate is the rate-de-
termining step inside the capsule. Investigations into benzothiazol-
idines as alternative hydride sources revealed an unexpected sub-
stitution effect of the hydride source itself. The research presented
confirms that the non-covalent combination of supramolecular
hosts with iminium catalysis is opening up new exciting possibili-
ties to increase enantioselectivity in challenging reactions.
ASSOCIATED CONTENT
Supporting Information. This material is available free of charge via the
AUTHOR INFORMATION
11. Catti, L.; Zhang, Q.; Tiefenbacher, K., Chem. Eur. J. 2016, 22, 9060-
9066.
12. Cullen, W.; Misuraca, M. C.; Hunter, C. A.; Williams, N. H.; Ward, M.
D., Nat. Chem. 2016, 8, 231-236.
Corresponding Author
konrad.tiefenbacher@unibas.ch / tkonrad@ethz.ch
8
ACS Paragon Plus Environment