Exo-Selective Diels-Alder Reactions
A R T I C L E S
Scheme 2. Stereochemical Dependence on the Substitution Pattern of the Starting Materials
Chart 1. Structures of Dienes 1 and 2 and Dienophiles 3-6
Examples of exo-selective Diels-Alder reactions are also
found in host-guest chemistry. Thus, a trimeric porphyrin host
facilitates an exclusively exo cycloaddition of a furan and a
maleimide by orienting them in the required disposition.17 The
exo orientation can also be fulfilled by hydrogen bonding within
the supramolecular complex.18 Monoclonal antibodies that
catalyze enantioselective Diels-Alder reactions of N-acylamino-
1,3-butadienes and N,N-dimethylacrylamide in an either endo-
or exo-specific fashion have also been derived.19
During the study of the preparation of enantioenriched
fluorinated carbocycles,20 we synthesized an array of Diels-Alder
cycloadducts featuring an allylsilane or a silyl enol ether, starting
from all-carbon silylated dienes21 or silyloxy dienes, respectively
(Scheme 2).22,23 We observed a remarkable change in the endo/
exo stereoselectivity of the cycloaddition that depends on the
substitution pattern of the starting material. As depicted in
Scheme 2, when both R1 and R2 are a methyl group (Scheme
2, right), the adducts with four stereocenters are formed with a
consistently high exo selectivity. Use of the desmethyl diene
and/or dienophile leads to the “normal” endo products predomi-
nantly (Scheme 2, left). The observation that such a minor
modification of the substituents on these common substrates
could lead to a dramatic change in endo/exo selectivity is
intriguing, not least because it holds obvious implications for
the stereodefined synthesis of carbocycles in general. We now
detail the synthetic results obtained with this class of substituent-
dependent, exo-selective Diels-Alder reactions as well as the
results of computational studies that reveal the origins of these
selectivities.
Synthetic Results and Discussion
(17) Walter, C. J.; Anderson, H. L.; Sanders, J. K. M. J. Chem. Soc., Chem.
Commun. 1993, 458.
The dienes 1 and 2 and dienophiles 3-6 that form the basis
of this work are shown in Chart 1. The silylated dienes and
silyloxydienes24 and the dienophiles25 were either readily
synthesized by reported methods or were commercially avail-
able. The numbering of the product cycloadducts is shown in
Figure 1.
(18) Pearson, R. J.; Kassianidis, E.; Philp, D. Tetrahedron Lett. 2004, 45,
4777.
(19) (a) Cannizzaro, C. E.; Ashley, J. A.; Janda, K. D.; Houk, K. N. J. Am.
Chem. Soc. 2003, 125, 2489. (b) Heine, A.; Stura, E. A.; Yli-
Kauhaluoma, J. T.; Gao, C.; Deng, Q.; Beno, B. R.; Houk, K. N.;
Janda, K. D.; Wilson, I. A. Science 1998, 279, 1934. (c) Yli-
Kauhaluoma, J. T.; Ashley, J. A.; Lo, C.-H.; Tucker, L.; Wolfe, M. M.;
Janda, K. D. J. Am. Chem. Soc. 1995, 117, 7041. (d) Gouverneur,
V. E.; Houk, K. N.; de Pascual-Teresa, B.; Beno, B.; Janda, K. D.;
Lerner, R. A. Science 1993, 262, 204.
The Diels-Alder reactions involving the R,ꢀ-unsaturated
N-acyloxazolidinone 3 and their asymmetric variants mediated
by Evans’ chiral auxiliary 3* 26 are listed in entries 1-8 of Table
1. These were performed in dichloromethane at -40 °C
promoted by 1.4 equiv of Me2AlCl. As previously reported,20
the asymmetric Diels-Alder reaction of silylated diene 1a with
the homochiral 3* delivered endo-7 as the major product with
complete CR-Re facial selectivity (entry 1).26 Under otherwise
identical conditions, however, diene 1b, which has an extra
methyl group at C1, afforded exo-8 as the sole isolated product
(entry 2). As proved by X-ray crystallography of exo-8, this
cycloaddition also arises from attack on the homochiral dieno-
phile at its CR-Re face exclusively. The sense of asymmetric
induction in this case is thus identical to that observed in their
endo-selective counterparts involving 1a and other reported
dienes.26 Reaction of diene 1c bearing an additional methyl
group at C3 yielded comparable results (entry 3). The sense of
(20) Lam, Y.-h.; Bobbio, C.; Cooper, I. R.; Gouverneur, V. Angew. Chem.,
Int. Ed. 2007, 46, 5106.
(21) For related Diels-Alder reactions of all-carbon silylated dienes, see:
(a) Ryu, D. H.; Corey, E. J. J. Am. Chem. Soc. 2003, 125, 6388. (b)
Vedejs, E.; Duncan, S. M. J. Org. Chem. 2000, 65, 6073. (c) Organ,
M. G.; Winkle, D. D. J. Org. Chem. 1997, 62, 1881. (d) Corey, E. J.;
Letavic, M. A. J. Am. Chem. Soc. 1995, 117, 9616. (e) Krafft, G. A.;
Garcia, E. A.; Guram, A.; O’Shaughnessy, B.; Xu, X. Tetrahedron
Lett. 1986, 27, 2691. (f) Sakurai, H.; Hosomi, A.; Saito, M.; Sasaki,
K.; Iguchi, H.; Sasaki, J.-I.; Araki, Y. Tetrahedron 1983, 39, 883. (g)
Trost, B. M.; Shimizu, M. J. Am. Chem. Soc. 1982, 104, 4299. (h)
Ojima, I.; Yatabe, M.; Fuchikami, T. J. Org. Chem. 1982, 47, 2051.
(22) (a) Frankowski, K. J.; Golden, J. E.; Zeng, Y.; Lei, Y.; Aube´, J. J. Am.
Chem. Soc. 2008, 130, 6018. (b) Alonso, D.; Caballero, E.; Medarde,
M.; Tome´, F. Tetrahedron Lett. 2007, 48, 907. (c) Caballero, E.;
´
Alonso, D.; Pela´ez, R.; Alvarez, C.; Puebla, P.; Sanz, F.; Medarde,
M.; Tome´, F. Tetrahedron 2005, 61, 6871. (d) Caballero, E.; Alonso,
D.; Pela´ez, R.; Alvarez, C.; Puebla, P.; Sanz, F.; Medarde, M.; Tome´,
F. Tetrahedron Lett. 2004, 45, 1631.
(23) (a) Nakashima, D.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 9626.
(b) Ruijter, E.; Schu¨ltingkemper, H.; Wessjohann, L. A. J. Org. Chem.
2005, 70, 2820. (c) Boezio, A. A.; Jarvo, E. R.; Lawrence, B. M.;
Jacobsen, E. N. Angew. Chem., Int. Ed. 2005, 44, 6046. (d) Chaplin,
J. H.; Edwards, A. J.; Flynn, B. L. Org. Biomol. Chem. 2003, 1, 1842.
(e) Kraus, G. A.; Hon, Y. S.; Sy, J.; Raggon, J. J. Org. Chem. 1988,
53, 1397. (f) Bell, V. L.; Holmes, A. B.; Hsu, S.-Y.; Mock, G. A.;
Raphael, R. A. J. Chem. Soc., Perkin Trans. 1 1986, 1507.
Figure 1. Numbering of cycloadducts.
9
J. AM. CHEM. SOC. VOL. 131, NO. 5, 2009 1949