72
M.P. Balanay et al. / Journal of Photochemistry and Photobiology A: Chemistry 248 (2012) 63–72
[34] D.L. Mobley, C.I. Bayly, M.D. Cooper, M.R. Shirts, K.A. Dill, Small molecule
hydration free energies in explicit solvent: an extensive test of fixed-charge
atomistic simulations, Journal of Chemical Theory and Computation 5 (2009)
350–358.
[51] A. Ogunsipe, T. Nyokong, Solvent effects on the photophysicochemical prop-
erties of tetra(tert-butylphenoxy) phthalocyaninato zinc (II), Acta Physico
Chimica Sinica 27 (2011) 1045–1052.
[52] A. Baheti, P. Singh, C.-P. Lee, K.R.J. Thomas, K.-C. Ho, 2,7-Diaminofluorene-based
organic dyes for dye-sensitized solar cells: effect of auxiliary donor on opti-
cal and electrochemical properties, Journal of Organic Chemistry 76 (2011)
4910–4920.
[53] H. Imahori, S. Kang, H. Hayashi, M. Haruta, H. Kurata, S. Isoda, S.E. Canton, Y.
Infahsaeng, A. Kathiravan, T.R. Pascher, P. Chaˇıbera, A.P. Yartsev, V. Sundstrom,
Photoinduced charge carrier dynamics of Zn–porphyrin–TiO2 electrodes: the
key role of charge recombination for solar cell performance, Journal of Physical
Chemistry A 115 (2011) 3679–3690.
[54] H. Nasri, J. Fischer, R. Weiss, E. Bill, A. Trautwein, Synthesis and characteriza-
tion of five-coordinate high-spin iron(II) porphyrin complexes with unusually
large quadrupole splittings. Models for the P460 center of hydroxylamine oxi-
doreductase from nitrosomonas, Journal of the American Chemical Society 109
(1987) 2549–2550.
[55] M.J. Griffith, M. James, G. Triani, P. Wagner, G.G. Wallace, D.L. Officer, Deter-
mining the orientation and molecular packing of organic dyes on a TiO2 surface
using X-ray reflectometry, Langmuir 27 (2011) 12944–12950.
[56] W.M. Campbell, A.K. Burrell, D.L. Officer, K.W. Jolley, Porphyrins as light har-
vesters in the dye-sensitised TiO2 solar cell, Coordination Chemistry Reviews
248 (2004) 1363–1379.
[57] K.-M. Lee, V. Suryanarayanan, K.-C. Ho, K.R. Justin Thomas, J.T. Lin, Effects
of co-adsorbate and additive on the performance of dye-sensitized solar
cells: a photophysical study, Solar Energy Materials and Solar Cells 91 (2007)
1426–1431.
[35] N. Govind, M. Valiev, L. Jensen, K. Kowalski, Excitation energies of zinc por-
phyrin in aqueous solution using long-range corrected time-dependent density
functional theory, Journal of Physical Chemistry A 113 (2009) 6041–6043.
[36] C.P. Kelly, C.J. Cramer, D.G. Truhlar, Adding explicit solvent molecules to con-
tinuum solvent calculations for the calculation of aqueous acid dissociation
constants, Journal of Physical Chemistry A 110 (2006) 2493–2499.
[37] M.K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S.
Ito, B. Takeru, M. Grätzel, Combined experimental and DFT-TDDFT computa-
tional study of photoelectrochemical cell ruthenium sensitizers, Journal of the
American Chemical Society 127 (2005) 16835–16847.
[38] E.E. Bonfantini, A.K. Burrell, W.M. Campbell, M.J. Crossley, J.J. Gosper,
M.M. Harding, D.L. Officer, D.C.W. Reid, Efficient synthesis of free-base
2-formyl-5,10,15,20-tetraarylporphyrins, their reduction and conversion to
[(porphyrin-2-yl) methyl] phosphonium salts, Journal of Porphyrins and
Phthalocyanines 6 (2002) 708–719.
[39] A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange,
Journal of Chemical Physics 98 (1993) 5648.
[40] C. Lee, W. Yang, R.G. Parr, Development of the Colle–Salvetti correlation-energy
formula into a functional of the electron density, Physical Review B 37 (1988)
785–789.
[41] M.P. Balanay, D.H. Kim, Optical properties of porphyrin analogues for solar cells:
an NLO approach, Current Applied Physics 11 (2011) 109–116.
[42] T. Yanai, D.P. Tew, N.C. Handy, A new hybrid exchange-correlation functional
using the Coulomb-attenuating method (CAM-B3LYP), Chemical Physics Let-
ters 393 (2004) 51–57.
[58] R. Katoh, M. Kasuya, S. Kodate, A. Furube, N. Fuke, N. Koide, Effects of 4-
tert-butylpyridine and Li ions on photoinduced electron injection efficiency in
black-dye-sensitized nanocrystalline TiO2 films, Journal of Physical Chemistry
C 113 (2009) 20738–20744.
[43] Z.L. Cai, M.J. Crossley, J.R. Reimers, R. Kobayashi, R.D. Amos, Density functional
theory for charge transfer: the nature of the N-bands of porphyrins and chloro-
phylls revealed through CAM-B3LYP, CASPT2, and SAC-CI calculations, Journal
of Physical Chemistry B 110 (2006) 15624–15632.
[44] D. Jacquemin, E.A. Perpete, G. Scalmani, M.J. Frisch, R. Kobayashi, C. Adamo,
Assessment of the efficiency of long-range corrected functionals for some
properties of large compounds, Journal of Chemical Physics 126 (2007)
144105–144112.
[59] S. Nakade, T. Kanzaki, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida, Role of elec-
trolytes on charge recombination in dye-sensitized TiO2 solar cell (1): the case
−
of solar cells using the I−/I3 redox couple, Journal of Physical Chemistry B 109
(2005) 3480–3487.
[60] N. Kopidakis, K.D. Benkstein, J. van de Lagemaat, A.J. Frank, Transport-limited
recombination of photocarriers in dye-sensitized nanocrystalline TiO2 solar
cells, Journal of Physical Chemistry B 107 (2003) 11307–11315.
[61] C. Zhang, Y. Huang, Z. Huo, S. Chen, S. Dai, Photoelectrochemical effects of guani-
dinium thiocyanate on dye-sensitized solar cell performance and stability,
Journal of Physical Chemistry C 113 (2009) 21779–21783.
[62] C. Shi, S. Dai, K. Wang, X. Pan, F. Kong, L. Hu, The adsorption of 4-tert-
butylpyridine on the nanocrystalline TiO2 and Raman spectra of dye-sensitized
solar cells in situ, Vibrational Spectroscopy 39 (2005) 99–105.
[63] S. Yu, S. Ahmadi, C. Sun, P. Palmgren, F. Hennies, M. Zuleta, M. Göthelid, 4-Tert-
butyl pyridine bond site and band bending on TiO2 (1 1 0), Journal of Physical
Chemistry C 114 (2010) 2315–2320.
[64] R. Katoh, A. Furube, M. Kasuya, N. Fuke, N. Koide, L. Han, Photoinduced electron
injection in black dye sensitized nanocrystalline TiO2 films, Journal of Materials
Chemistry 17 (2007) 3190–3196.
[65] J. He, G. Benkö, F. Korodi, T. Polívka, R. Lomoth, B. Åkermark, L. Sun, A. Hagfeldt,
V. Sundström, Modified phthalocyanines for efficient near-IR sensitization of
nanostructured TiO2 electrode, Journal of the American Chemical Society 124
(2002) 4922–4932.
[66] S.A. Haque, E. Palomares, B.M. Cho, A.N.M. Green, N. Hirata, D.R. Klug, J.R. Dur-
rant, Charge separation versus recombination in dye-sensitized nanocrystalline
solar cells: the minimization of kinetic redundancy, Journal of the American
Chemical Society 127 (2005) 3456–3462.
[67] J. Bisquert, Chemical capacitance of nanostructured semiconductors: its origin
and significance for nanocomposite solar cells, Physical Chemistry Chemical
Physics 5 (2003) 5360–5364.
[68] J.-G. Chen, C.-Y. Chen, S.-J. Wu, J.-Y. Li, C.-G. Wu, K.-C. Ho, On the photophysical
and electrochemical studies of dye-sensitized solar cells with the new dye CYC-
B1, Solar Energy Materials and Solar Cells 92 (2008) 1723–1727.
[69] M. Grätzel, Conversion of sunlight to electric power by nanocrystalline dye-
sensitized solar cells, Journal of Photochemistry and Photobiology A 164 (2004)
3–14.
[45] A. Dreuw, M. Head-Gordon, Failure of time-dependent density func-
tional theory for long-range charge-transfer excited states: the
zincbacteriochlorin–bacteriochlorin and bacteriochlorophyll–spheroidene
complexes, Journal of the American Chemical Society 126 (2004) 4007–4016.
[46] M.P. Balanay, S.H. Lee, S.C. Yu, D.H. Kim, Application of long-range-corrected
density functional in metallated porphyrin analogues for dye-sensitized solar
cells, Bulletin of the Korean Chemical Society 32 (2011) 705–708.
[47] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato,
X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.
Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J.
Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M.
Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C.
Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth,
P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman,
J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Gaussian Inc., Wallingford, CT,
2009.
[48] M. Makarska-Bialokoz, G. Pratviel, S. Radzki, The influence of solvent polarity
on spectroscopic properties of 5-[4-(5-carboxy-1-butoxy)-phenyl]-10,15,20-
tris(4-N-methylpyridiniumyl)porphyrin and its complexes with Fe(III) and
Mn(III) ions, Journal of Molecular Structure 875 (2008) 468–477.
[49] H. Isago, Y. Kagaya, A. Matsushita, Solvatochromic shift of phthalocyanine Q-
band governed by a single solvent parameter, Chemistry Letters 33 (2004)
862–863.
[50] W. Chidawanyika, E. Antunes, T. Nyokong, Synthesis and solvent effects on the
photophysicochemical properties of novel cadmium phenoxy phthalocyanines,
Journal of Photochemistry and Photobiology A 195 (2008) 183–190.