T. G. Murali Dhar et al. / Bioorg. Med. Chem. Lett. 19 (2009) 96–99
99
Table 1 (continued)
Compound
Structure
CCR3 binding (IC50, nM)
Shape change (IC50, nM)
CYP2D6 (IC50, nM)
F
N
O
N
N
H
N
H
N
N
23a
23b
0.18
0.47
4.4
>3, >10
5900
14,000
N
O
O
N
ND, not determined.
In conclusion, a series of urea-based CCR3 antagonists with a
tetrahydro-1,3-oxazin-2-one linker have been identified. Quartern-
izing the carbon atom adjacent to the urea functionality of the tet-
rahydro-1,3-oxazin-2-one core was critical to obtaining good
yields during the Curtius rearrangement reaction en route to the fi-
nal products. Of the compounds shown, the potency and selectivity
of analog 19b was similar to that of our development candidate
BMS-639623. We will report our additional efforts towards gener-
ating potent, selective, and bioavailable CCR3 antagonists in subse-
quent manuscripts.
Yeleswaram, S.; Graden, D. M.; Solomon, K. A.; Newton, R. C.; Trainor, G. L.;
Decicco, C. P.; Ko, S. S. J. Med. Chem. 2005, 48, 2194.
11. Pruitt, J. R.; Batt, D. G.; Wacker, D. A.; Bostrom, L. L.; Booker, S. K.; McLaughlin,
E.; Houghton, G. C.; Varnes, J. G.; Christ, D. D.; Covington, M.; Das, A. M.; Davies,
P.; Graden, D.; Kariv, I.; Orlovsky, Y.; Stowell, N. C.; Vaddi, K. G.; Wadman, E. A.;
Welch, P. A.; Yeleswaram, S.; Solomon, K. A.; Newton, R. C.; Decicco, C. P.;
Carter, P. H.; Ko, S. S. Bioorg. Med. Chem. Lett. 2007, 17, 2992.
12. Santella, J. B., III; Gardner, D. S.; Yao, W.; Shi, C.; Reddy, P.; Tebben, A. J.;
Delucca, G. V.; Wacker, D. S.; Watson, P. S.; Welch, P. K.; Wadman, E. S.; Davies,
P.; Solomon, K. A.; Graden, D. M.; Yeleswaram, S.; Mandlekar, S.; Kariv, I.;
Decicco, C. P.; Ko, S. S.; Carter, P.; Duncia, J. V. Bioorg. Med. Chem. Lett. 2008, 18,
576.
13. Kurihara, T.; Matsubara, Y.; Harusawa, S.; Yoneda, R. J. Chem. Soc. Perkin Trans. 1
1991, 3177.
14. The major peak by LC/MS corresponded to the arecoline derivative. There is
precedent for a similar type of reaction occurring in DMSO/DBU at 120 °C. See:
Matsubara, Y.; Yoneda, R.; Harusawa, S.; Kurihara, T. Chem. Pharm. Bull. 1988,
36, 1597.
Acknowledgments
The authors thank our colleagues John V. Duncia, Joseph B. San-
tella, Soo S. Ko and George V. DeLucca for providing intermediates
6, 7a, 7b, 9, 10, 17, 18a, and 18b.
15. The putative arecoline derivative was again observed by LC/MS as a major
product.
16. Gardner, D. S.; Santella, J. B., III; Tebben, A. J.; Batt, D. G.; Ko, S. S.; Traeger, S. C.;
Welch, P. K.; Wadman, E. A.; Davies, P.; Carter, P.; Duncia, J. V. Bioorg. Med.
Chem. Lett. 2008, 18, 586.
References and notes
17. Ko, S. S.; Delucca, G. V.; Duncia, J. V.; Santella, J. B.; Wacker, D. A.; Yao, W. PCT
WO 2001098269.
1. Will-Karp, M.; Karp, C. L. Science 2004, 305, 1726.
2. Green, R. H.; Brightling, C. E.; McKenna, S.; Hargadon, B.; Parker, D.; Bradding,
P.; Wardlaw, A. J.; Pavord, I. D. Lancet 2002, 360, 1715.
3. Flood-Page, P.; Menzies-Gow, A.; Phipps, S.; Ying, S.; Wangoo, A.; Ludwig, M. S.;
Barnes, N.; Robinson, D.; Kay, A. B. J. Clin. Invest. 2003, 112, 1029.
4. Humbles, A. A.; Lloyd, C. M.; McMillan, S. J.; Friend, D. S.; Xanthou, G.;
McKenna, E. E.; Ghiran, S.; Gerard, N. P.; Yu, C.; Orkin, S. H.; Gerard, C. Science
2004, 305, 1776.
18. Crystallographic data (excluding structure factors) for 15 have been deposited
with the Cambridge Crystallographic Data Centre as supplementary
publication Nos. CCDC 703990 and 703991. These data can be obtained free
CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033; e-mail:
deposit@ccdc.cam.ac.uk).
19. The authors in Ref. 13 observe that the threo aldol product undergoes
cyclization to the trans-oxazolidinone within 10 min, whereas the mesylate
of the erythro isomer gives the cis-oxazolidinone when kept at room
temperature for 3 days. When we subjected the diasteromeric mixture of
the aldol products to the cyclization conditions reported in Ref. 13 and
5. For leading references on chemokines and their receptors, see: Sallusto, F.;
Baggiolini, M. Nat. Immunol. 2008, 9, 949.
6. Pease, J. E. Curr. Drug Targets 2006, 7, 3.
7. (a) Ma, W.; Bryce, P. J.; Humbles, A. A.; Laouini, D.; Yalcindag, A.; Alenius, H.;
Friend, D. S.; Oettgen, H. C.; Gerard, C.; Geha, R. S. J. Clin. Invest. 2002, 109, 621;
(b) Humbles, A. A.; Lu, B.; Friend, D. S.; Okinaga, S.; Lora, J.; Al-Garawi, A.;
Martin, T. R.; Gerard, N. P.; Gerard, C. Proc. Natl. Acad. Sci. U.S.A. 2002, 99, 1479;
(c) Fulkerson, P. C.; Fischetti, C. A.; McBride, M. L.; Hassman, L. M.; Hogan, S. P.;
Rothenberg, M. C. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 16418.
8. (a) Batra, J.; Rajpoot, R.; Ahluwalia, J.; Devarapu, S. K.; Sharma, S. K.; Dinda, A. K.
Ghosh B. J. Med. Genet. 2007, 44, 397; (b) Nakamura, H.; Luster, A. D.;
Nakamura, T.; In, K. H.; Sonna, L. A.; Deykin, A.; Israel, E.; Drazen, J. M.; Lilly, C.
M. J. Allergy Clin. Immunol. 2001, 108, 946.
stirred the reaction mixture for 18 h at room temperature,
cis–trans-oxazolidinone isomers (15) was obtained
a
mixture of
along with
erythromesylate in a ratio of ꢀ1:1.5.
20. Chiral HPLC analysis (Chiracel OD, 250 Â 4.6 mm 10 u, CO2/MeOH, 70:30)
of 19a indicated the presence of a set of enantiomers, in a 1:1 ratio, as
expected.
21. For a description of the human CCR3 binding assay please see Ref. 12, and
references cited therein.
22. For a description of the eosinophil shape change assay please see: Sabroe, I.;
Hartnell, A.; Jopling, L. A.; Bel, S.; Ponath, P. D.; Pease, J. E.; Collins, P. D.;
Williams, T. J. J. Immunol. 1999, 162, 2946.
9. De Lucca, G. V. Curr. Opin. Drug Discov. Dev.. 2006, 9, 516.
10. De Lucca, G. V.; Kim, U.-T.; Vargo, B. J.; Duncia, J. V.; Santella, J. B., III; Gardner,
D. S.; Zheng, C.; Liauw, A.; Wang, Z.; Emmett, G.; Wacker, D. A.; Welch, P. K.;
Covington, M.; Stowell, N. C.; Wadman, E. A.; Das, A. M.; Davies, P.;