218
C. S. Chan et al. / Tetrahedron Letters 50 (2009) 216–218
Soc. 2006, 128, 6786; (h) Shi, X.; Gorin, D. J.; Toste, F. D. J. Am. Chem. Soc. 2005,
127, 5802; (i) Harrak, Y.; Blaszykowski, C.; Bernard, M.; Cariou, K.; Mainetti, E.;
Mouriès, V.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. J. Am. Chem. Soc.
2004, 126, 8656; (j) Mamane, V.; Gress, T.; Krause, H.; Fürstner, A. J. Am. Chem.
Soc. 2004, 126, 8654.
R1 was instead converted to 2h by the use of AuCl as catalyst and by
elevating the reaction temperature to 70 °C, though the chemical
yield was low (entry 7).
A plausible mechanism of the reaction of 1 is illustrated in
Scheme 3. The cationic gold catalyst first coordinates to the alkynyl
moiety of 1. The then triggered intramolecular nucleophilic attack
of the carbonyl group to the electron-deficient triple bond leads to
the formation of cyclic intermediate 6. [1,2] Alkyl migration would
be followed by C–O bond cleavage, forming the gold carbenoid
intermediate 7.16,17 Finally, hydrogen transfer leads to elimination
of the gold catalyst, and aromatization of 8 would give 2. Forma-
tion of 3 as a byproduct clearly suggests intermediacy of the furyl-
gold species 5.18
In conclusion, we are now in the position to synthesize 2-naph-
thylmethyl aryl ketones by using cationic gold catalysts. This
present reaction, which proceeds via carbon functional group
migration on an oxonium ion, is a useful methodology to synthe-
size complex compounds in an efficient and atom-economic
manner. Further investigations including mechanistic studies are
currently on going in our laboratory.
4. For recent reports: (a) Yu, M.; Zhang, G.; Zhang, L. Org. Lett. 2007, 9, 2147; (b)
Buzas, A.; Gagosz, F. J. Am. Chem. Soc. 2006, 128, 12614; (c) Zhang, L. J. Am.
Chem. Soc. 2005, 127, 16804.
5. For Pd catalysts: (a) Fukuda, Y.; Shiragami, H.; Utimoto, K.; Nozaki, H. J. Org.
Chem. 1991, 56, 5816; (b) Utimoto, K. Pure Appl. Chem. 1983, 55, 1845; (c)
Sheng, H.; Lin, S.; Huang, Y. Synthesis 1987, 1022. For Au catalyst: (d) Hashmi, A.
S. K.; Schwarz, L.; Choi, J.-H.; Frost, T. M. Angew. Chem., Int. Ed. 2000, 39, 2285.
For Ag catalyst: (e) Sromek, A. W.; Kel’in, A. V.; Gevorgyan, V. Angew. Chem., Int.
Ed. 2004, 43, 2280; (f) Kim, J. T.; Kel’in, A. V.; Gevorgyan, V. Angew. Chem., Int.
Ed. 2003, 42, 98.
6. (a) Liu, Y.; Liu, M.; Guo, S.; Tu, H.; Zhou, Y.; Gao, H. Org. Lett. 2006, 8, 3445; (b)
Yao, T.; Zhang, X.; Larock, R. C. J. Am. Chem. Soc. 2004, 126, 11164; (c) Yao, T.;
Zhang, X.; Larock, R. C. J. Org. Chem. 2005, 70, 7679; (d) Oh, C. H.; Reddy, V. R.;
Kim, A.; Rhim, C. Y. Tetrahedron Lett. 2006, 47, 5307.
7. Zhang, J.; Schmalz, H.-G. Angew. Chem., Int. Ed. 2006, 45, 6704.
8. (a) Jin, T.; Yamamoto, Y. Org. Lett. 2007, 9, 5259; (b) Jin, T.; Yamamoto, Y. Org.
Lett. 2008, 10, 3137.
9. (a) Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto, Y. J. Am. Chem. Soc.
2002, 124, 12650; (b) Asao, N.; Nogami, T.; Lee, S.; Yamamoto, Y. J. Am. Chem.
Soc. 2003, 125, 10921; (c) Asao, N.; Kasahara, T.; Yamamoto, Y. Angew. Chem.,
Int. Ed. 2003, 42, 3504; (d) Asao, N.; Aikawa, H. J. Org. Chem. 2006, 71, 5249; (e)
Kusama, H.; Ishida, K.; Funami, H.; Iwasawa, N. Angew. Chem., Int. Ed. 2008, 47,
4903.
10. (a) Kirsch, S. F.; Binder, J. T.; Liébert, C.; Menz, H. Angew. Chem., Int. Ed. 2006, 45,
5878; (b) Binder, J. T.; Crone, B.; Kirsch, S. F.; Liébert, C.; Menz, H. Eur. J. Org.
Chem. 2007, 1636.
Acknowledgment
This work was financially supported by a Grant-in-Aid for Sci-
entific Research from Japan Society for Promotion in Science (JSPS).
11. Crone, B.; Kirsch, S. F. Chem. Eur. J. 2008, 14, 3514.
12. (a) Recent reviews on gold-catalyzed reaction: Lipshutz, B. C.; Yamamoto, Y.
Ed. Chem. Rev. 2008, 108, 3239–3442.; (b) Jiménez-Núñez, E.; Echavarren, A. M.
Chem. Rev. 2008, 108, 3326; (c) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108,
3239; (d) Skouta, R.; Li, C.-J. Tetrahedron 2008, 54, 4917; (e) Bongers, N.;
Krause, N. Angew. Chem., Int. Ed. 2008, 47, 2178; (f) Hashmi, A. S. K. Chem. Rev.
2007, 107, 3180; (g) Yamamoto, Y. J. Org. Chem. 2007, 72, 7817; (h) Fürstner, A.;
Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410; (i) Gorin, D. J.; Toste, F. D.
Supplementary data
Experimental procedures and characterization of the products 2
and 3. This material is available. Supplementary data associated
with this article can be found, in the online version, at
Nature 2007, 446, 395; (j) Patil, N. T.; Yamamoto, Y. ARKIVOC, 2007, v, 6.; (k)
Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem., Int. Ed. 2006, 45, 7896; (l) Zhang,
L.; Sun, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271; (m) Asao, N. Synlett
2006, 1645; (n) Widenhoefer, R. A.; Han, X. Eur. J. Org. Chem. 2006, 4555; (o)
Ma, S.; Yu, S.; Gu, Z. Angew. Chem., Int. Ed. 2006, 45, 200.
References and notes
13. General procedure: A stock solution of (Ph3P)AuOTf (0.05 M) was prepared by
mixing stoichiometric amounts of (Ph3P)AuCl and AgOTf in THF under argon at
room temperature for 5 min, and was allowed to stand for another 10 min for
gravitational sedimentation to take place. To a 1 dram vial with a threaded cap
containing a magnetic stir bar and 1b (73.2 mg, 1 equiv) in 0.2 mL of THF at
50 °C under argon was added 0.2 mL of the pre-generated solution of
1. (a) Tietze, L. F. Chem. Rev. 1996, 96, 115; (b) Parsons, P. J.; Penkett, C. S.; Shell, A.
J. Chem. Rev. 1996, 96, 195; (c) Tietze, L. F.; Beifuss, U. Angew. Chem., Int. Ed. Engl.
1993, 32, 131.
2. (a) Fürstner, A.; Szillat, H.; Stelzer, F. J. Am. Chem. Soc. 2000, 122, 6785; (b)
Fürstner, A.; Stelzer, F.; Szillat, H. J. Am. Chem. Soc. 2001, 123, 11863; (c)
Nakamura, I.; Mizushima, Y.; Yamamoto, Y. J. Am. Chem. Soc. 2005, 127, 15022;
(d) Fürstner, A.; Davies, P. W. J. Am. Chem. Soc. 2005, 127, 15024; (e) Dubé, P.;
Toste, F. D. J. Am. Chem. Soc. 2006, 128, 12062; (f) Fürstner, A.; Heilmann, E. K.;
Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 4760; (g) Nakamura, I.; Chan, C. S.;
Araki, T.; Terada, M.; Yamamoto, Y. Org. Lett. 2008, 10, 309; (h) Bae, H. J.;
Baskar, B.; An, S. E.; Cheong, J. Y.; Thangadurai, D. T.; Hwang, I.-C.; Rhee, Y. H.
Angew. Chem., Int. Ed. 2008, 47, 2263.
3. For recent reports: (a) Shapiro, N. D.; Toste, F. D. J. Am. Chem. Soc. 2008, 130,
9244; (b) Dudnik, A. S.; Schwier, T.; Gevorgyan, V. Org. Lett. 2008, 10, 1465; (c)
Amijs, C. H. M.; López-Carrillo, V.; Echavarren, A. M. Org. Lett. 2007, 9, 4021; (d)
Schwier, T.; Sromek, A. W.; Yap, D. M. L.; Chernyak, D.; Gevorgyan, V. J. Am.
Chem. Soc. 2007, 129, 9868; (e) Hardin, A. R.; Sarpong, R. Org. Lett. 2007, 9,
4547; (f) Ohe, K.; Fujita, M.; Matsumoto, H.; Tai, Y.; Miki, K. J. Am. Chem. Soc.
2006, 128, 9270; (g) Pujanauski, B. G.; Prasad, B. A. B.; Sarpong, R. J. Am. Chem.
(Ph3P)AuOTf by
a microsyringe. The mixture was stirred at 50 °C and
monitored by TLC analysis. Upon completion, the mixture was filtered
through a short silica plug and eluted with ethyl acetate. The solvent was
removed under reduced pressure, and the crude product was
chromatographed with hexanes–EtOAc (20:1 v/v) to afford 2b as pale yellow
solid.
14. Nishina, N.; Yamamoto, Y. Synlett 2007, 1767.
15. (a) Beck, W.; Sünkel, K. Chem. Rev. 1988, 88, 1405; (b) Lawrance, G. A. Chem.
Rev. 1986, 86, 17.
16. Dudnik, A. S.; Gevorgyan, V. Angew. Chem., Int. Ed. 2007, 46, 5195.
17. Alternatively, it is possible that the transformation from 5 to 6 proceeds
through 1,5-alkyl migration.
18. Presumably,
a trace amount of water would capture 5 to form the
byproduct 3.