and enzymatic reduction could also provide a mechanism for
more general anti-oxidative protection, as has been established
previously for methionine oxidation.12,15 Indeed, as H2O2 is a
direct precursor of hydroxyl radicals in vivo, sequestration of
H2O2 by MTX–MsrA could also reduce the production of
OHꢁ in the mycobacterial cell wall. Future studies will focus
on testing this hypothesis in vivo.
We acknowledge the Royal Society, the San Antonio Area
Foundation, the University of Leeds and NIH for funding.
D.C. is supported by NIH/NIAID AI 37139. W.B.T. is a
recipient of a Royal Society University Research Fellowship.
Mr J. Willis is thanked for assistance in protein production.
Notes and references
1 R. P. Tripathi, N. Tewari, N. Dwivedi and V. K. Tiwari, Med. Res.
Rev., 2005, 25, 93.
2 WHO, Global Tuberculosis Control: Surveillance, Planning,
Financing, World Health Organization, Geneva, 2008.
3 P. J. Brennan and D. C. Crick, Curr. Top. Med. Chem., 2007, 7,
475.
4 L. Kremer and G. S. Besra, in Tuberculosis and the Tubercle Bacillus,
ed. S. T. Cole, American Society for Microbiology, Washington,
DC, 2005, p. 287.
5 D. Chatterjee and K.-H. Khoo, Glycobiology, 1998, 8, 113;
V. Briken, S. A. Porcelli, G. S. Besra and L. Kremer, Mol.
Microbiol., 2004, 53, 391; J. Nigou, M. Gilleron and G. Puzo,
Biochimie, 2003, 85, 153.
6 J. Chan, X. Fan, S. W. Hunter, P. J. Brennan and B. R. Bloom,
Infect. Immun., 1991, 59, 1755.
Fig. 3 Anomeric (H-1) region of the 1H NMR spectra of methyl
a-D-MSX (a) before and (b) after treatment with MsrA–DTT.
Anomeric (H-1) region of the 1H NMR spectra of methyl a-L-MSX
(d) before and (c) after treatment with MsrA–DTT.
7 J. A. Imlay, Annu. Rev. Biochem., 2008, 77, 755.
8 A. Treumann, X. Feng, L. McDonnell, P. J. Derrick, A. E.
Ashcroft, D. Chatterjee and S. W. Homans, J. Mol. Biol., 2002,
316, 89.
9 P. Ludwiczak, M. Gilleron, Y. Bordat, C. Martin, B. Gicquel and
G. Puzo, Microbiology (Reading, U. K.), 2002, 148, 3029;
Y. Guerardel, E. Maes, V. Briken, F. Chirat, Y. Leroy,
C. Locht, G. Strecker and L. Kremer, J. Biol. Chem., 2003, 278,
36637.
10 W. B. Turnbull, K. H. Shimizu, D. Chatterjee, S. W. Homans and
A. Treumann, Angew. Chem., Int. Ed., 2004, 43, 3918.
11 M. Joe, D. Sun, H. Taha, G. C. Completo, J. E. Croudace,
D. A. Lammas, G. S. Besra and T. L. Lowary, J. Am. Chem.
Soc., 2006, 128, 5059.
12 R. L. Levine, L. Mosoni, B. S. Berlett and E. R. Stadtman, Proc.
Natl. Acad. Sci. U. S. A., 1996, 93, 15036.
13 S. Boschi-Muller, A. Olry, M. Antoine and G. Branlant, Biochim.
Biophys. Acta, 2005, 1703, 221.
14 S. J. Sasindran, S. Saikolappan and S. Dhandayuthapani, Future
Microbiol., 2007, 2, 619.
spectra for D- and L-MSX were identical (Fig. 3a,d), as
expected for pairs of enantiomers. The difference in chemical
shift for the anomeric proton of methyl a-MSX from that of
MSX-LAM (Fig. 1b) can be attributed to the different anomeric
substituents.10 Upon treatment with MsrA and DTT, only the
S-sulfoxide isomers were reduced to give mixtures of MTX
and either the R-methylsulfinyl-D-xylofuranoside (Fig. 3b) or
R-methylsulfinyl-L-xylofuranoside (Fig. 3c).21 As the downfield
MSX anomeric signal is lost for both MSX-LAM (Fig. 1c) and
methyl a-D-MSX (Fig. 3b), we can thus conclude that MTX is
D-configured. This result provides independent corroboration
of the findings of Lowary and co-workers who compared the
NMR spectra of six synthetic MTX-mannosyl disaccharides
with the published NMR spectra of LAM.11
15 C. R. Picot, I. Petropoulos, M. Perichon, M. Moreau, C.
Nizard and B. Friguet, Free Radical Biol. Med., 2005, 39,
1332.
16 T. Douglas, D. S. Daniel, B. K. Parida, C. Jagannath and
S. Dhandayuthapani, J. Bacteriol., 2004, 186, 3590.
17 J. Moskovitz, H. Weissbach and N. Brot, Proc. Natl. Acad. Sci.
U. S. A., 1996, 93, 2095.
In conclusion, we have demonstrated that exposure of LAM
to the biological oxidant H2O2 results in oxidation of only the
MTX substituent. Stereoselective reduction of the S-sulfoxide
isomer of MSX-LAM using MsrA provides proof of the
absolute configuration of this novel sugar without the need
to remove the sugar from the polysaccharide. While oxidation
of MTX would almost certainly affect its biological function
in vivo, this damage could be repaired, in part, by MsrA which
is present in the mycobacterial cell wall/membrane fraction.
Alternatively, there exists the possibility that MSX on the
surface of M. tuberculosis may be reduced by host MsrA and
MsrB when the bacteria reside inside macrophages. If so, then
MSX would be the first natural non-protein substrate for these
enzymes. Furthermore, this redox cycle of chemical oxidation
18 B. Hamasur, G. Kallenius and S. B. Svenson, FEMS Immunol.
¨
Med. Microbiol., 1999, 24, 11; I. Verma, A. Rohilla and
G. K. Khuller, Lett. Appl. Microbiol., 1999, 29, 113.
19 S. L. Mueller-Ortiz, A. R. Wanger and S. J. Norris, Infect. Immun.,
2001, 69, 7501.
20 A. B. Taylor, D. M. Benglis, Jr, S. Dhandayuthapani and
P. J. Hart, J. Bacteriol., 2003, 185, 4119.
21 X-ray crystallography could not be used to confirm the relative
configurations of the products as the sulfoxides were syrups.
Therefore, the configurations of the sulfoxides are assigned on
the basis of the known substrate specificity of MsrA (see ref. 13).
ꢀc
This journal is The Royal Society of Chemistry 2009
112 | Chem. Commun., 2009, 110–112