+
+
Glucosides from Curculigo
J ournal of Natural Products, 1997, Vol. 60, No. 2 79
(7 L × 5). The EtOH extract (110 g) was partitioned
between CHCl3 (1 L × 3) and H2O (1 L) to give a CHCl3-
soluble fraction (8 g). The aqueous layer after removal
of residual CHCl3 via condensation was passed through
an Amberlite XAD-2 column (800 g, × 5) to get a 30%
MeOH fraction (35 g), a 50% MeOH fraction (3.6 g), and
a MeOH fraction (0.98 g). Further separation by a lobar
RP-8 column (B type) eluted with MeOH-H2O (3:7)
yielded 3 (2.04 g, 1.41% w/w), 4 (111 mg), and 5 (47 mg)
from a 4.96-g portion of the 30% MeOH fraction.
(+)-1-O-Bu tyln ya sicosid e (1): amorphous powder;
[R]23D +19.0° (c, 1.0, MeOH); IR (KBr) ν max: 3400,
2960, 2940, 2870, 1600, 1520, 1440, 1360, 1280, 1080,
870, 815, 780 cm-1; UV (MeOH) λ max (log ꢀ) 257 (4.39),
288 (4.07) nm; CD (MeOH) [θ]308 0°, [θ]289 +8380°, [θ]270
+6130°, [θ]249 +20 340°, [θ]233 +3820°, [θ]211 +53 120°;
1H-NMR and 13C-NMR spectral data, see Table 1 and
Table 2; FABMS (neg) m/z [M - H + TG]- 641 (50), [M
- H]- 533 (100), 459 (13), 409 (19), 279 (56).
(-)-1-O-Bu tyln ya sicosid e (2): amorphous powder;
[R]23D -41.0° (c 1.0, MeOH); IR (KBr) ν max 3400, 2960,
2940, 2870, 1600, 1520, 1445, 1360, 1285, 1070, 870,
820, 780 cm-1; UV (MeOH) λ max (log ꢀ) 257 (4.20), 285
(3.98) nm; CD (MeOH) [θ]310 -400°, [θ]287 -5390°, [θ]270
-4250°, [θ]258 -10 720°, [θ]250 -12 480°, [θ]233 -3980°;
1H-NMR and 13C-NMR spectral data, see Table 1 and
Table 2; FABMS (neg) m/z [M - H + TG]- 641 (34), [M
- H]- 533 (79), 389 (100), 279 (50).
Nya sicosid e (3): CD (MeOH); [θ]337 0°, [θ]327 +210°,
[θ]304 +2020°, [θ]300 +2180°, [θ]285 +5100°, [θ]270 +4040°,
[θ]252 +11 420°, [θ]231 +1960°, [θ]210 + 31 570°; 1H-NMR
and 13C-NMR spectral data, see Table 1 and Table 2;
HMBC data, H-2 to C-1, C-4, and Glc C-1, H-3 to C-4,
H-2′ to C-1, C-4′, C-6′, H-5′ to C-1′, C-3′, H-6′ to C-1 and
C-2′, H-2′′ to C-5, C-4′′, and C-6′′, H-5′′ to C-1′′ and C-3′′,
H-6′′ to C-5, Glc H-1 to C-2, Glc H-3 to Glc C-2 and Glc
C-4, Glc H-5 to Glc C-1 and Glc C-3.
and the residue was separated by low pressure column
(RP-8) [MeOH-H2O (30:70)] to give amorphous 6 (2
mg): [R]25D +3.8° (c 0.2, MeOH); UV (MeOH) λ max (log
ꢀ) 257 (4.17), 286 (3.92) nm; CD (MeOH) [θ]328 0°, [θ]319
+318°, [θ]312 0°, [θ]302 +2310°, [θ]284 +6160°, [θ]271
+4750°, [θ]250 +15 360°, [θ]231 +3650°, [θ]211 +37 280°;
1H-NMR (MeOH-d4) δ 6.80 (2H, d, J ) 1.9 Hz, H-2′ and
2′′), 6.74 (1H, d, J ) 8.1 Hz, H-5′), 6.74 (1H, dd, J )
1.9, 8.1 Hz, H-6′′), 6.69 (1H, dd, J ) 1.9, 8.1 Hz, H-6′),
6.66 (1H, d, J ) 8.1 Hz, H-5′′), 4.20 (1H, d, J ) 6.5 Hz,
H-1), 3.75 (1H, m, H-2), 3.35 (2H, m, H-1 of O-Bu), 2.50
(1H, dd, J ) 5.1, 16.8 Hz, H-3), 2.24 (1H, dd, J ) 5.9,
16.8 Hz, H-3), 1.55 (2H, m, H-2 of O-Bu), 1.37 (2H, m,
H-3 of O-Bu), 0.87 (3H, t, J ) 7.4 Hz, H-4 of O-Bu);
FABMS (neg) m/z [M - H]- 371.
(-)-1-O-Bu tyln ya sicol (7). Using the same condi-
tions as in the preparation of 6, 7 (1 mg) was obtained
from hydrolysis of 2 (38 mg). The physical data of 7
are as follows: [R]25D +35.0° (c 0.1, MeOH); UV (MeOH)
λ max (log ꢀ) 257.0 (4.16), 284.6 (3.92) nm; CD (MeOH)
[θ]329 0°, [θ]323 +310°, [θ]313 0°, [θ]288 -3850°, [θ]270 0°,
1
[θ]249 -9340°, [θ]232 -780°; H-NMR (MeOH-d4) δ 6.82
(1H, d, J ) 1.9 Hz, H-2′), 6.81 (1H, d, J ) 1.9 Hz, H-2′′),
6.745 (1H, dd, J ) 1.9, 8.1 Hz, H-6′′), 6.74 (1H, d, J )
8.1 Hz, H-5′), 6.68 (1H, dd, J ) 1.9, 8.1 Hz, H-6′), 6.65
(1H, d, J ) 8.1 Hz, H-5′′), 4.12 (1H, d, J ) 6.3 Hz, H-1),
3.80 (1H, m, H-2), 3.35 (2H, m, H-1 of O-Bu), 2.60 (2H,
d, J ) 6.0 Hz, H-3), 1.52 (2H, m, H-2 of O-Bu), 1.38 (2H,
m, H-3 of O-Bu), 0.88 (3H, t, J ) 7.4 Hz, H-4 of O-Bu);
FABMS (neg) m/z [M - H]- 371.
Nya sicol (8). Using the same conditions as in the
preparation of 6, 8 (9 mg) was obtained from hydrolysis
of 3 (40 mg). The physical data of 8 are as follows:
[R]25D +36.0° (c 1.0, MeOH); UV (MeOH) λ max (log ꢀ)
257.8 (4.33), 283.8 (4.16) nm; CD (MeOH) [θ]320 +270°,
[θ]313 0°, [θ]302 +2190°, [θ]284 +6100°, [θ]270 +4860°, [θ]253
+14 510°, [θ]233 +3160°, [θ]211 +36 820°; 1H-NMR (MeOH-
d4) δ 2.26 (1H, dd, J ) 6.3, 17.0 Hz, H-3), 2.48 (1H, dd,
J ) 4.9, 17.0 Hz, H-3), 3.75 (1H, dt, J ) 5.1, 6.6 Hz,
H-2), 4.52 (1H, d, J ) 6.6 Hz, H-1), 6.65 (1H, d, J ) 8.1
Hz, H-5′′), 6.75 (1H, dd, J ) 1.9, 8.1 Hz, H-6′′ or 6′),
6.80 (1H, d, J ) 1.9 Hz, H-2′′), 6.74 (1H, dd, J ) 1.9,
8.1 Hz, H-6′ or 6′′), 6.72 (1H, d, J ) 8.1 Hz, H-5′), 6.86
(1H, d, J ) 1.9 Hz, H-2′); FABMS (neg) m/z [M - H]-
315.
Assa y on Con tr a ction s a n d Sp on ta n eou sly Bea t-
in g Hea r t Ra te of Ra t Ca r d ia c Tissu es. Right atrial,
left atrial, and right ventricular strips (4 × 6 mm) were
dissected from the hearts of male WKY rats (weighing
250-300 g) and placed in an organ bath containing 10
mL of Tyrode solution gassed with 95% O2 and 5% CO2.
Contractions of electrically driven left atrial and right
ventricular strips and heart rate in spontaneously
beating right atria were measured by the method
described previously.6
3′′-Deh yd r oxyn ya sicosid e (4): amorphous powder;
[R]23D -2.0° (c 1.0, MeOH); UV (MeOH) λ max (log ꢀ)
255 (4.18), 282 (3.80) nm; [R]23D -2.0° (c 1.0, MeOH);
IR (KBr) ν max 3400 (br m, OH), 2950, 1605, 1515, 1450,
1360, 1290, 1085, 1035, 840, 820 cm-1; CD (MeOH) [θ]340
-200°, [θ]322 +150°, [θ]311 -310°, [θ]302 +230°, [θ]300
+220°, [θ]283 +3970°, [θ]268 +2540°, [θ]243 +10 430°,
[θ]226 -850°; [θ]215 +3220°, [θ]207 +15 280°; 1H-NMR and
13C-NMR spectral data, see Table 1 and Table 2;
FABMS (neg) m/z [M - H]- 461 (24), 443 (8), 371 (21),
331 (13), 297 (17), 281 (42), 263 (45), 249 (16), 205 (17),
183 (100), 181 (18), 150 (16), 137 (21).
1-O-Met h yln ya sicosid e (5): amorphous powder;
[R]23D +22.0° (c 1.0, MeOH); IR (KBr) ν max 3400 (br
m, OH), 2940, 1603, 1520, 1445, 1360, 1285, 1070, 820,
780 cm-1; UV (MeOH) λ max (log ꢀ) 257 (4.25), 286 (3.92)
nm; CD (MeOH) [θ]329 0°, [θ]322 +250°, [θ]314 0°, [θ]301
+2110°, [θ]285 +5300°, [θ]272 +4030, [θ]251 +12 030°,
Evau lation of An tiar r h yth m ic Activity on Gu in ea
P ig Hea r t. Cardiac arrhythmia of electrically driven
left atrial or right ventricular strips of guinea pigs were
induced by ouabain (0.6 µM). The antiarrhythmic
activity of compounds 1-5 was tested after arrhythmia
was induced.7
1
[θ]231 +2550°, [θ]210 +32 510°; H-NMR and 13C-NMR
spectra data, see Table 1 and Table 2; FABMS (neg) m/z
[M - H]- 491 (100), 470 (15), 459 (25), 390 (22), 327
(48), 297 (21), 279 (79), 255 (24), 243 (22).
Hyd r olysis of Nor lign a n s. (+)-1-O-Bu tyln ya sicol
(6). â-Glucosidase (15 mg) was added to the solution
(7.5 mL) of 1 (40 mg) in acetate buffer (pH 5.5).2 The
solution was maintained at 37 °C for 4 days and
extracted with EtOAc (40 mL × 3). The combined
organic layer was dried over Na2SO4 and evaporated,
Ack n ow led gm en t. The authors are grateful to the
National Science Council, Taiwan, Republic of China,
for financial support of this work under the grant
NSC86-2314-B-002-081.