Haiwen Tian et al.
COMMUNICATIONS
Experimental Section
Chem. Rev. 2011, 111, 1713–1760; t) J. Adrio, J. C. Car-
retero, Chem. Commun. 2011, 47, 6784–6794; u) C. S.
Marques, A. J. Burke, ChemCatChem 2011, 3, 635–645;
v) T. R. Ramadhar, R. A. Batey, Synthesis 2011, 1321–
1346; w) M. Nielsen, D. Worgull, T. Zweifel, B.
Gschwend, S. Bertelsen, K. A. Jøgensen, Chem.
Commun. 2011, 47, 632–649.
Typical Procedure for Cu-Catalyzed Aerobic
Oxidative Synthesis of Imines from Alcohols and
Amines
The mixture of benzyl alcohol 1a (0.23 mL, 2.2 mmol,
1.1 equiv.), benzylamine 2a (0.22 mL, 2 mmol), CuI
(0.0038 g, 0.02 mmol, 1 mol%), 2,2’-bipyridine (0.0031 g,
0.02 mmol, 1 mol%), TEMPO (0.0063 g, 0.04 mmol,
2 mol%) was stirred in the open air at room temperature
(ca. 25–308C) and monitored by TLC and/or GC-MS. The
mixture was then, without any work-up, directly purified by
column chromatography on neutral alumina gel (petroleum
ether/ethyl acetate/triethylamine 100:10:1) to afford 3aa in
94% isolated yield. The alumina gel was preneutralized with
1% (v/v) of triethylamine in petroleum ether before pack-
ing.
[3] a) M. Shimizu, I. Hachiya, I. Mizota, Chem. Commun.
2009, 874–889; b) B. Groenendaal, E. Ruijter, R. V. A.
Orru, Chem. Commun. 2008, 5474–5489; c) J.-C. M.
Monbaliu, K. G. R. Masschelein, C. V. Stevens, Chem.
Soc. Rev. 2011, 40, 4708–4739.
[4] a) C.-J. Li, Z. Li, Pure Appl. Chem. 2006, 78, 935–945;
b) C.-J. Li, Acc. Chem. Res. 2009, 42, 335–344; c) C. J.
Scheuermann, Chem. Asian J. 2010, 5, 436–451.
[5] a) M. Largeron, M.-B. Fleury, Angew. Chem. 2012, 124,
5505–5508; Angew. Chem. Int. Ed. 2012, 51, 5409–5412;
b) X. Lang, H. Ji, C. Chen, W. Ma, J. Zhao, Angew.
Chem. 2011, 123, 4020–4023; Angew. Chem. Int. Ed.
2011, 50, 3934–3937; c) R. D. Patila, S. Adimurthy, Adv.
Synth. Catal. 2011, 353, 1695–1700; d) G. Jiang, J. Chen,
J.-S. Huang, C.-M. Che, Org. Lett. 2009, 11, 4568–4571;
e) C. S. Yi, D. W. Lee, Organometallics 2009, 28, 947–
949; f) H. Choi, M. P. Doyle, Chem. Commun. 2007,
745–747; g) J. S. M. Samec, A. H. ꢆll, J.-E. Bꢃckvall,
Chem. Eur. J. 2005, 11, 2327–2334.
Acknowledgements
We thank NNSFC (No. 20902070), SRF for ROCS of SEM,
NSF (No. Y4100579) and QJTP of Zhejiang Province (No.
QJD0902004) for financial support. H.T. thanks the Post-
graduate Innovation Foundation of Wenzhou University (No.
31606036010142).
[6] a) F. Palacios, C. Alonso, D. Aparicio, G. Rubiales,
J. M. de Los Santos, Tetrahedron 2007, 63, 523–575;
b) P. M. Fresneda, P. Molina, Synlett 2004, 1–17.
[7] a) L. Blackburn, R. J. K. Taylor, Org. Lett. 2001, 3,
1637–1639; b) A. S. Medvedeva, A. V. Mareev, A. I.
Borisova, A. V. Afonin, ARKIVOC, 2003, 13, 157–165;
c) M. S. Yusubov, K.-W. Chi, J. Y. Park, R. Karimovc,
V. V. Zhdankinc, Tetrahedron Lett. 2006, 47, 6305–6308.
[8] a) B. Gnanaprakasam, J. Zhang, D. Milstein, Angew.
Chem. 2010, 122, 1510–1513; Angew. Chem. Int. Ed.
2010, 49, 1468–1471; b) A. Maggi, R. Madsen, Organo-
metallics 2012, 31, 451–455; c) M. A. Esteruelas, N.
Honczek, M. Olivꢇn, E. Onate, M. Valencia, Organo-
metallics 2011, 30, 2468–2471; d) R. Cano, D. J. Ramꢂn,
M. Yus, J. Org. Chem. 2011, 76, 5547–5557; e) Y. Shir-
aishi, M. Ikeda, D. Tsukamoto, S. Tanaka, T. Hiraia,
Chem. Commun. 2011, 47, 4811–4813; f) J. W. Rigoli,
S. A. Moyer, S. D. Pearce, J. M. Schomaker, Org.
Biomol. Chem. 2012, 10, 1746–1749.
[9] a) M. S. Kwon, S. Kim, S. Park, W. Bosco, R. K. Chi-
drala, J. Park, J. Org. Chem. 2009, 74, 2877–2879; b) H.
Sun, F.-Z. Su, J. Ni, Y. Cao, H.-Y. He, K.-N. Fan,
Angew. Chem. 2009, 121, 4454–4457; Angew. Chem. Int.
Ed. 2009, 48, 4390–4393; c) J. W. Kim, J. He, K. Yama-
guchi, N. Mizuno, Chem. Lett. 2009, 38, 920–921; d) W.
He, L. Wang, C. Sun, K. Wu, S. He, J. Chen, P. Wu, Z.
Yu, Chem. Eur. J. 2011, 17, 13308–13317; e) Q. Kang,
Y. Zhang, Green Chem. 2012, 14, 1016–1019; f) S.
Kegnæs, J. Mielby, U. V. Mentzel, C. H. Christensen, A.
Riisager, Green Chem. 2010, 12, 1437–1441; g) S. Si-
thambaram, R. Kumar, Y.-C. Son, S. L. Suib, J. Catal.
2008, 253, 269–277; h) L. Jiang, L. Jin, H. Tian, X.
Yuan, X. Yu, Q. Xu, Chem. Commun. 2011, 47, 10833–
10835.
References
[1] a) H. Schiff, Justus Liebigs Ann. Chem. 1864, 131, 118–
119; b) M. M. Sprung, Chem. Rev. 1940, 26, 297–338;
c) R. W. Layer, Chem. Rev. 1963, 63, 489–510.
[2] a) S. Patai, The Chemistry of the Carbon-Nitrogen
Double Bond (Chemistry of Functional Goups), Wiley-
Interscience, New York, 1970; b) J. P. Adams, J. Chem.
Soc. Perkin Trans. 1 2000, 125–139; c) J. A. Ellman,
T. D. Owens, T. P. Tang, Acc. Chem. Res. 2002, 35, 984–
995; d) A. E. Taggi, A. M. Hafez, T. Lectka, Acc.
Chem. Res. 2003, 36, 10–19; e) A. Cꢂrdova, Acc. Chem.
Res. 2004, 37, 102–112; f) J.-A. Ma, Chem. Soc. Rev.
2006, 35, 630–636; g) A. Dçmling, Chem. Rev. 2006,
106, 17–89; h) A. Erkkilꢃ, I. Majander, P. M. Pihko,
Chem. Rev. 2007, 107, 5416–5470; i) J. Gawronski, N.
Wascinska, J. Gajewy, Chem. Rev. 2008, 108, 5227–
5252; j) K.-I. Yamada, K. Tomioka, Chem. Rev. 2008,
108, 2874–2886; k) P. Merino, E. Marquꢄs-Lꢂpez, R. P.
Herrera, Adv. Synth. Catal. 2008, 350, 1195–1208; l) M.
OrdꢂÇez, H. Rojas-Cabrera, C. Cativiela, Tetrahedron
2009, 65, 17–49; m) S. F. Martin, Pure Appl. Chem.
2009, 81, 195–204; n) P. de Armas, D. Tejedor, F. Garꢅa-
Tellado, Angew. Chem. 2010, 122, 1029–1032; Angew.
Chem. Int. Ed. 2010, 49, 1013–1016; o) C.-J. Li, Acc.
Chem. Res. 2010, 43, 581–590; p) V. R. Akhmetova,
G. R. Khabibullina, E. B. Rakhimova, R. A. Vagapov,
R. R. Khairullina, Z. T. Niatshina, N. N. Murzakova,
Mol. Diversity 2010, 14, 463–471; q) B. Yin, Y. Zhang,
L.-W. Xu, Synthesis 2010, 3583–3595; r) S. Kobayashi,
Y. Mori, J. S. Fossey, M. M. Salter, Chem. Rev. 2011,
111, 2626–2704; s) J.-H. Xie, S.-F. Zhu, Q.-L. Zhou,
[10] a) A. J. A. Watson, J. M. J. Williams, Science 2010, 329,
635–636; b) G. E. Dobereiner, R. H. Crabtree, Chem.
2676
ꢁ 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2012, 354, 2671 – 2677