Liang Xing et al.
COMMUNICATIONS
Y. M. He, H. F. Zhou, L. Wu, B. L. Li, Q. H. Fan, J.
Org. Chem. 2006, 71, 2874–2877; d) L. S. Zu, J. Wang,
H. Li, W. Wang, Org. Lett. 2006, 8, 3077–3079.
matarchis, A. Bianco, M. Prato, Chem. Rev. 2006, 106,
1105–1136.
[9] a) P. M. Ajayan, Chem. Rev. 1999, 99, 1787–1799;
b) P. M. Ajayan, O. Z. Zhou, Top. Appl. Phys. 2001, 80,
391–425; c) R. H. Baughman, A. A. Zakhidov, W. A.
de Heer, Science 2002, 297, 787–792; d) N. Robertson,
C. A. McGowan, Chem. Soc. Rev. 2003, 32, 96–103.
[10] C. Baleizao, B. Gigante, H. García, A. Corma, Tetrahe-
dron 2004, 60, 10461–10468.
[5] For selected examples of dendritic chiral catalysts with
a positive dendrimer effect, see: a) R. Breinbauer,
E. N. Jacobsen, Angew. Chem. 2000, 112, 3750–3753;
Angew. Chem. Int. Ed. 2000, 39, 3604–3607; b) Q. H.
Fan, Y. M. Chen, X. M. Chen, D. Z. Jiang, F. Xi,
A. S. C. Chan, Chem. Commun. 2000, 789–790; c) Y.
Ribourdouille, G. D. Engel, M. Richard-Plouet, L. H.
Gade, Chem. Commun. 2003, 1228–1229; d) Y. Wu, Y.
Zhang, M. Yu, G. Zhao, S. Wang, Org. Lett. 2006, 8,
4417–4420; e) Z. J. Wang, G. J. Deng, Y. Li, Y. M. He,
W. J. Tang, Q. H. Fan, Org. Lett. 2007, 9, 1243–1246.
[6] For recent examples of magnetically recoverable chiral
catalysts, see: a) A. G. Hu, G. T. Yee, W. B. Lin, J. Am.
Chem. Soc. 2005, 127, 12486–12487; b) D. W. Lee, J. W.
Lee, H. G. Lee, S. M. Jin, T. H. Hyeon, B. M. Kim,
Adv. Synth. Catal. 2006, 348, 41–46.
[7] For selected examples of self-assembly supported chiral
catalysts, see: a) J. S. Seo, D. Whang, H. Lee, S. I. Jun,
J. Oh, Y. J. Jeon, K. Kim, Nature 2000, 404, 982–986;
b) S. Takizawa, H. Somei, D. Jayaprakash, H. Sasai,
Angew. Chem. 2003, 115, 5889–5892; Angew. Chem.
Int. Ed. 2003, 42, 5711–5714; c) Y. Liang, Q. Jing, X.
Li, L. Shi, K. Ding, J. Am. Chem. Soc. 2005, 127, 7694–
7695; d) H. Y. Peng, C. K. Lam, T. C. W. Mak, Z. W.
Cai, W. T. Ma, Y. X. Li, H. N. C. Wong, J. Am. Chem.
Soc. 2005, 127, 9603–9611; e) L. Shi, X. Wang, C. A.
Sandoval, M. Li, Q. Qi, Z. Li, K. Ding, Angew. Chem.
2006, 118, 4214–4218; Angew. Chem. Int. Ed. 2006, 45,
4108–4112.
[11] For other examples involving CNTs-pyrene p-p stack-
ing, see: a) R. J. Chen, Y. Zhang, D. Wang, H. Dai, J.
Am. Chem. Soc. 2001, 123, 3838–3839; b) C. Ehli,
G. M. A. Rahman, N. Jux, D. Balbinot, D. M. Guldi, F.
Paolucci, M. Marcaccio, D. Paolucci, M. Melle-Franco,
F. Zerbetto, S. Campidelli, M. Prato, J. Am. Chem. Soc.
2006, 128, 11222–11231; c) H. Paloniemi, M. Lukkari-
nen, T. Aaritalo, S. Areva, J. Leiro, M. Heinonen, K.
Haapakka, J. Lukkari, Langmuir 2006, 22, 74–83.
[12] U. Nagel, E. Kinzel, J. Andrade, G. Prescher, Chem.
Ber. 1986, 119, 3326–3343.
1
[13] Mp 152–1548C; [a]20: +117 (c 1.0, CH2Cl2); H NMR
(400 MHz, CDCl3): Dd=8.33 (d, J=9.2 Hz, 1H), 8.18–
7.97 (m, 7H), 7.83 (d, J=7.6, 1H), 7.40–7.28 (m, 8H),
7.23–7.10 (m, 12H), 4.04–3.94 (m, 1H), 3.86–3.70 (m,
2H), 3.37 (t, J=7.2, 2H), 3.27–3.21 (m, 1H), 2.92–2.82
(m, 2H), 2.25–2.19 (m, 2H), 2.18–2.10 (m, 2H);
13C NMR (75 MHz, CDCl3): d=170.2, 135.5, 135.3,
135.1, 134.9, 134.5, 134.4, 132.5, 130.4, 130.0, 128.8,
128.3, 128.1, 127.9, 127.6, 126.5, 126.3, 125.6, 124.7,
124.0, 123.7, 122.6, 47.6, 47.0, 38.0, 36.3, 32.8, 31.8, 25.5;
31P NMR (121 MHz, CDCl3): d=À11.57, À11.63; HR-
+
MS (ESI): m/z=710.2743, calcd. for C48H42NOP2
[8] a) S. Iijima, Nature 1991, 354, 56–58; b) M. Dressel-
haus, G. Dresselhaus, P. Avouris, Carbon Nanotubes:
Synthesis Properties and Applications, Springer-Verlag,
Berlin, 2001; c) S. Reich, C. Thomsen, J. Maultzsch,
Carbon Nanotubes: Basic Concepts and Physical Prop-
erties, Wiley-VCH, Weinheim, 2004; d) D. Tasis, N. Tag-
([M+H]+): 710.2736.
[14] Purchased from Shenzhen Nanotech Port Co. Ltd. Mul-
tiwall carbon nanotubes prepared by the chemical
vapor deposition method, 3–5 walls, <10 nm diameter,
>95% purity, <5% amorphous, <0.2% ash, 5–15 mm
length.
1016
ꢁ 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2008, 350, 1013 – 1016