Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
a Quantum yield. b Emission lifetime.
2
3
Yang, H. Gao, X. Yang, X. Gao, Chem. ScDiO. 2I:0101.610, 39/C9CC09376A
7, 6701−6705;
c) H. Xin, C. Ge, X. Jiao, X. Yang, K. Rundel, C. R. McNeill, X.
Gao, Angew. Chem. Int. Ed. 2018, 57, 1322−1326; d) H. Xin, J.
Li, C. Ge, X. Yang, T. Xue, X. Gao, Mater. Chem. Front. 2018, 2,
975−985.
a) X.‐H. Zhang, C. Li, W.‐B. Wang, X.‐X. Cheng, X.‐S. Wang, B.‐
W. Zhang, J. Mater. Chem. 2007, 17, 642–649; b) E.
Puodziukynaite, H.‐W. Wang, J. Lawrence, A. J. Wise, T. P.
Russell, M. D. Barnes, T. Emrick, J. Am. Chem. Soc. 2014, 136
,
11043–11049; c) H. Nishimura, N. Ishida, A. Shimazaki, A.
Wakamiya, A. Saeki, L. T. Scott, Y. Murata, J. Am. Chem. Soc.
2015, 137, 15656–15659.
4
5
a) P. G. Lacroix, I. Malfant, G. Iftime, A. C. Razus, K. Nakatani,
J. A. Delaire, Chem. Eur. J. 2000, 6, 2599–2608; b) C. Lambert,
G. Nöll, M. Zabel, F. Hampel, E. Schmälzlin, C. Bräuchle, K.
Meerholz, Chem. Eur. J. 2003, 9, 4232–4239; c) L. Cristian, I.
Sasaki, P. G. Lacroix, B. Donnadieu, I. Asselberghs, K. Clays, A.
Fig. 2 UV/Vis and fluorescence spectra of 3a and 5a
−5d in 30%
C. Razus, Chem. Mater. 2004, 16, 3543–3551.
CF3CO2H/CH2Cl2.
a) J. Xia, B. Capozzi, S. Wei, M. Strange, A. Batra, J. R. Moreno,
R. J. Amir, E. Amir, G. C. Solomon, L. Venkataraman, L. M.
Campos, Nano Lett. 2014, 14, 2941–2945; b) J.‐X. Dong, H.‐L.
Zhang, Chin. Chem. Lett. 2016, 27, 1097–1104; c) T. Shoji, S.
Ito, Chem. Eur. J. 2017, 23, 16696–16709; d) Y. Zhou, G.
Baryshnikov, X. Li, M. Zhu, H. Ågren, L. Zhu, Chem. Mater.
2018, 30, 8008−8016.
5b
6
7
a) K.‐P. Zeller, Azulene, in Methoden der Organischen
Chemie (Houben‐Weyl), 4th ed. (Ed.: H. Kropf), Thieme,
Stuttgart, 1985, Vol. V, Part 2c, pp. 127–418; b) G. Fischer,
Adv. Heterocycl. Chem. 2009, 97, 131–218; c) S. Ito, T. Shoji,
N. Morita, Synlett 2011, 2279–2298.
5a
5c
3a
5d
Fig. 3 Photos of 3a and 5a−5d in 30% CF3CO2H/CH2Cl2 under the
irradiation of UV light (λex = 365 nm).
In summary, we have established the direct synthesis of 2‐
arylazulenes by [8 + 2] CA reaction of 2H‐cyclohepta[b]furan‐2‐
one derivatives with aryl‐substituted silyl enol ethers. Since
the precursors are readily available, the synthetic procedure
possesses significant advantages in comparison with the cross‐
coupling strategy by using aryl‐ and heteroarylmetal reagents
with 2‐haloazulenes and their pseudo halides, which are
known to be difficult to prepare.
This work was supported by JSPS KAKENHI Grant Number
17K05780. We thank Professor Dr. Shigeki Mori and Professor
Dr. Tetsuo Okujima, Ehime University, for helping us to analyse
the X‐ray diffraction results. We also thank Mr. Yuya Endo and
Mr. Tatsuki Nagahata, Hirosaki University, for their technical
assistance.
a) A. L. Crombie, J. L. Kane, Jr., K. M. Shea, R. L. Danheiser, J.
Org. Chem. 2004, 69, 8652–8667; b) E. Amir, R. J. Amir, L. M.
Campos, C. J. Hawker, J. Am. Chem. Soc. 2011, 133, 10046–
10049; c) E. Amir, M. Murai, R. J. Amir, J. S. Cowart Jr., M. L.
Chabinyc, Craig J. Hawker, Chem. Sci. 2014, 5, 4483–4489; d)
T. Shoji, A. Maruyama, T. Araki, S. Ito, T. Okujima, Org.
Biomol. Chem. 2015, 13, 10191–10197; e) T. Shoji, T. Araki, S.
Sugiyama, A. Ohta, R. Sekiguchi, S. Ito, T. Okujima, K. Toyota,
J. Org. Chem. 2017, 82, 1657−1665; f) T. Shoji, S. Ito, Adv.
Heterocycl. Chem. 2018, 126, 1–54.
8
a) T. Nozoe, S. Seto, S. Matsumura, Bull. Chem. Soc. Jpn.
1962, 35, 1990–1998; b) S. Ito, A. Nomura, N. Morita, C.
Kabuto, H. Kobayashi, S. Maejima, K. Fujimori, M. Yasunami,
J. Org. Chem. 2002, 67, 7295–7302.
9
S. Ito, R. Yokoyama, T. Okujima, T. Terazono, T. Kubo, A. Tajiri,
M. Watanabe, N. Morita, Org. Biomol. Chem. 2003, 1, 1947–
1952.
Conflicts of interest
10
M. Narita, T. Murafuji, S. Yamashita, M. Fujinaga, K. Hiyama,
Y. Oka, F. Tani, S. Kamijo, K. Ishiguro, J. Org. Chem. 2018, 83
,
There are no conflicts to declare.
1298−1303.
11 a) P.‐W. Wang, M. Yasunami, K. Takase, Tetrahedron Lett.
1971, 45, 4275−4278; b) M. Yasunami, A. Chen, P.‐W. Yang, K.
Notes and references
Takase, Chem. Lett. 1980, 9, 579–582; c) M. Yasunami, S.
1
a) Y. Tanaka, K. Shigenobu, Cardiovasc. Drug Rev. 2001, 19,
Miyoshi, N. Kanegae, K. Takase, Bull. Chem. Soc. Jpn. 1993,
66, 892–899.
12 T. Shoji, K. Miyashita, T. Araki, M. Tanaka, A. Maruyama, R.
Sekiguchi, S. Ito, T. Okujima, Synthesis 2016, 48, 2438–2448.
297–312; b) W. Pham, R. Weissleder, C.‐H. Tung, Angew.
Chem. Int. Ed. 2002, 41, 3659–3662; c) S. Lçber, H. Hîbner, A.
Buschauer, F. Sanna, A. Argiolas, M. R. Melis, P. Gmeiner,
Bioorg. Med. Chem. Lett. 2012, 22, 7151–7154; d) K. Ikegai,
M. Imamura, T. Suzuki, K. Nakanishi, T. Murakami, E.
Kurosaki, A. Noda, Y. Kobayashi, M. Yokota, T. Koide, K.
Kosakai, Y. Okhura, M. Takeuchi, H. Tomiyama, M. Ohta,
Bioorg. Med. Chem. 2013, 21, 3934–3948; e) J. Peet, A.
Selyutina, A. Bredihhin, Bioorg. Med. Chem. 2016, 24, 1653–
1657; f) T. O. Leino, A. Turku, J. Yli‐Kauhaluoma, J. P.
Kukkonen, H. Xhaard, E. A. A. Wallén, Eur. J. Med. Chem.
2018, 15, 88–100.
13 a) M. Kasha, Discuss. Faraday Soc. 1950,
Chem. Rev. 2012, 112, 4541–4568.
9, 14–19; b) T. Itoh,
14 a) M. Koch, O. Blacque, K. Venkatesan, Org. Lett. 2012, 14
1580–1583; b) T. Shoji, T. Araki, N. Iida, K. Miura, A. Ohta, R.
Sekiguchi, S. Ito, T. Okujima, Org. Chem. Front. 2019, , 195–
,
6
204; c) T. Shoji, K. Miura, A. Ohta, R. Sekiguchi, S. Ito, Y. Endo,
T. Nagahata, S. Mori, T. Okujima, Org. Chem. Front. 2019, 6,
2801–2811.
4 | J. Name., 2012, 00, 1‐3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins