186
Can. J. Chem. Vol. 87, 2009
from chloroform/ethanol to give iridaindene 2 as deep red
block-like crystals (68 mg, 65%), mp 282–284 °C (dec).
UV–vis (benzene) λmax (nm) (ε (mol/L)–1cm–1)): 364
(10 000), 510 (640). IR (KBr, cm–1): 694 (s), 743(s),
1094(s), 1435(s), 1483(s). 1H NMR (400 MHz, CDCl3, ppm)
δ: 7.10–7.57 (m, P(C6H5)3, and 3H′s of C6H5, 33H), 6.96–
7.02 (m, 2H′s of C6H5, 2H), 6.91 (d, JH-H= 7.6 Hz, H05,
References
1. I. Omae. Coord. Chem. Rev. 248, 995 (2004).
2. M. Catellani, G.P. Chiusoli, and M. Costa. J. Organomet.
Chem. 500, 69 (1995).
3. G.P. Chiusoli. J. Mol. Catal. 41, 75 (1987).
4. J. Dehand and M. Pfeffer. Coord. Chem. Rev. 18, 327 (1976).
5. M.E. van der Boom and D. Milstein. Chem. Rev. 103, 1759
(2003).
1H), 6.43 (dd, JH-H= 7.2, 7.2 Hz, H03, 1H), 6.10 (d, JH-H
=
7.2 Hz, H02, 1H), 5.99 (dd, JH-H= 7.2, 7.6 Hz, H04, 1H),
6. V. Ritleng, C. Sirlin, and M. Pfeffer. Chem. Rev. 102, 1731
(2002).
5.65 (s, H07, 1H). 13C{1H} NMR (100 MHz, CDCl3, ppm)
2,4
δ: 127.4 (t, JCP= 5.1 Hz, o-C6H5P), 129.3–129.8 (m, i-
7. G. Dyker. Angew. Chem. Int. Ed. 38, 1698 (1999).
8. P.R. Sharp. J. Organomet. Chem. 683, 288 (2003).
9. J.R. Bleeke. Acc. Chem. Res. 40, 1035 (2007).
10. U. Rosenthal, V.V. Burlakov, M.A. Bach, and T. Beweries.
Chem. Soc. Rev. 36, 719 (2007).
11. C.W. Landorf and M.M. Haley. Angew. Chem. Int. Ed. 45,
3914 (2006).
12. L.J. Wright. Dalton. Trans. 1821 (2006).
13. J.P. Collman, J.W. Kang, W.F. Little, and M.F Sullivan. Inorg.
Chem. 7, 1298 (1968).
3,5
C6H5P and p-C6H5P), 134.9 (t, JCP= 5.1 Hz, m-C6H5P),
120.1, 121.8, 122.1, 126.4, 127.1, 127.8, 133.0 (all singlet
signals are for CH of iridaindene six-membered ring and Ph
2
substituent of iridaindene); 133.9 (unresolved t, JCP=
7.9 Hz, iridaindene C2Ph), 139.5 (s, iridaindene C3H), 144.5
2
(s, quat. C), 145.9 (unresolved t, JCP= 6.9 Hz, iridaindene
1
CIr), 160.3 (s, quat. C). N.B. in H and 13C NMR spectra,
peaks due to the solvated CHCl3 appeared at 7.27 and
77.0 ppm, respectively. 31P NMR (162 MHz, CDCl3, ppm)
δ: 22.78. Anal. calcd. for C50H40ClP2Ir.CHCl3: C 58.35, H
3.94; found: C 57.82, H 4.36.
14. T. Takahashi, Z. Xi, A. Yamazaki, Y. Liu, K. Nakajima, and
M. Kotora. J. Am. Chem. Soc. 120, 1672 (1998).
15. T. Takahashi, R.Y. Tsai, Y. Li, K. Nakajima, and M. Kotora. J.
Am. Chem. Soc. 121, 11093 (1999).
X-ray structure determination of 2·CHCl3
16. R.J. Baxter, G.R. Knox, P.L. Pauson, and M.D. Spicer.
Single crystals of 2 suitable for X-ray diffraction study
were obtained from slow diffusion of ethanol into a solution
of 2 in chloroform or dichloromethane at room temperature.
A suitable deep-red blocklike crystal of the complex 2 ob-
tained from CHCl3/EtOH solution was subjected to an Enraf
Nonius Turbo CAD4 diffractometer with Graphite
monochromated Mo Kα (λ= 0.710 73 Å). Unit cell parame-
ters were obtained from a least-square refinement of 25 re-
flections. The structure was solved by SHELXS-97 and
refined by full-matrix least squares on F2 with SHELXL-97
methods (48, 49). The non-hydrogen atoms were refined
anisotropically. All calculations were performed using
WinGX crystallographic software package (50). Crystallog-
raphic data as well as structure solution and refinement
details for 2: C50H40Cl1P2Ir1.CHCl3; triclinic, P-1; a =
10.3295(15) Å, b = 12.4243(19) Å, c = 17.544(3) Å; α =
94.005(11)°, β = 98.539(13)°, γ = 98.581(12)°; V = 2191.9(6) Å3;
Organometallics, 18, 197 (1999).
17. R. Diercks, B.E. Eaton, S. Gurtzgen, S. Jalisatgi, A.J. Matzger,
R.H. Radde, and K.P.C. Vollhardt. J. Am. Chem. Soc. 120,
8247 (1998).
18. N. Agenet, V. Gandon, K.P.C. Vollhardt, M. Malacria, and C.
Aubert. J. Am. Chem. Soc. 129, 8860 (2007).
19. J.M. O’Connor, K. Hiibner, R. Merwin, P. Gantzel, A.L.
Rheingold, and B.S. Fong. J. Am. Chem. Soc. 119, 3631 (1997).
20. E.S. Johnson, G.J. Balaich, P.E. Fanwick, and I.P. Rothwell. J.
Am. Chem. Soc. 119, 11086 (1997).
21. H.J. Kim, N.S. Choi, and S.W. Lee. J. Organomet. Chem. 616,
67 (2000).
22. G. Moran, M. Green, and A.G. Orpen. J. Organomet. Chem.
250, C15 (1983).
23. J. Moreto, K. Maruya, P.M. Bailey, and P.M. Maitlis. J. Chem.
Soc. Dalton Trans. 1341 (1982).
24. W.S. Han and S.W. Lee. Organometallics, 24, 997 (2005).
25. E. Becker, K. Mereiter, M. Puchberger, R. Schmid, K. Kirchner,
A. Doppiu, and A. Salzer. Organometallics, 22, 3164 (2003).
26. E. Álvarez, M. Paneque, M.L. Poveda, and N. Rendón. Angew.
Chem. Int. Ed. 45, 474 (2006).
27. C.S. Chin and H. Lee. Chem. Eur. J. 10, 4518 (2004).
28. C.S. Chin, H. Lee, and M.-S. Eum. Organometallics, 24, 4849
(2005) and refs. cited therein.
Z = 2; T = 293(2) K; λ (Mo K α) = 0.710 73 Å; Dcalc
=
1.591 mg/m3; µ = 3.398 mm–1; F(000) = 1044; Θ (min–max) =
1.18–25.00°; independent reflection = 6440; Rint = 0.0201; T
(min, max) = 0.6124, 0.7727; data, restraints, parameters =
6440, 0, 524; final R indices (I>2σ(I)) R1 = 0.0711, wR2 =
0.1693; R indices (all data) R1 = 0.1339, wR2 = 0.2386; GOF
on F2 = 1.137.
29. H. Werner and A. Höhn. J. Organomet. Chem. 272, 105 (1984).
30. A. Bierstedt, G.R. Clark, W.R. Roper, and L.J. Wright. J.
Organomet. Chem. 691, 3846 (2006).
Acknowledgements
31. G.-L. Lu, W.R. Roper, L.J. Wright, and G.R. Clark. J.
Organomet. Chem. 690, 972 (2005).
SR thanks the Department of Science and Technology
(DST), New Delhi, for research grant inclusive of a post-
doctoral fellowship to JC. Financial assistance from Council
of Scientific and Industrial Research (CSIR) (fellowship to
SP) and University Grants Commission (UGC) (fellowship
to AKM) is also acknowledged. While submitting this work
to this special issue of CJC, SR likes to fondly express his
gratitude to Dick for the cheerful years spent at the RJP lab
two decades ago.
32. J. Choudhury, S. Podder, and S. Roy. J. Am. Chem. Soc. 127,
6162 (2005).
33. M. Banerjee and S. Roy. J. Mol. Catal. A, 246, 231 (2006).
34. J. Choudhury and S. Roy. J. Organomet. Chem. 692, 5614
(2007).
35. S. Podder, J. Choudhury, U.K. Roy, and S. Roy. J. Org. Chem.
72, 3100 (2007).
36. S. Podder, J. Choudhury, and S. Roy. J. Org. Chem. 72, 3129
(2007).
© 2008 NRC Canada