surements show that 8-oxoG is more easily oxidized
compared to (E1/2 0.75 and 1.3 vs NHE,
Useful uridine-based nucleosides, fulfilling these criteria, were
obtained by conjugating five-membered aromatic heterocycles
such as furan at the 5 position (e.g., 2).15-18 Among the various
heterocycles conjugated to dU, the furan moiety was found to
yield the most favorable photophysical characteristics.15,17a We
therefore anticipated the analogous furan-modified cytosine
nucleobase to be emissive and responsive.
The 5-modified nucleosides are easily obtained using a
coupling reaction between the 5-iodo substituted dU (1) and
the corresponding stannylated heterocycles (Scheme 1). Con-
G
≈
respectively).9a,10 Consequently, chemical approaches relying
on 8-oxoG’s susceptibility to oxidation and covalent trapping
of the oxidized products in duplex DNA have been re-
ported.11 Since fluorescence quenching frequently occurs via
photoinduced electron transfer (PET) mechanisms,12 we
suspected that 8-oxoG is likely to be a more effective
quencher of certain fluorophores compared to G, its precur-
sor.13 Here we describe the design, synthesis, photophysical
evaluation, incorporation, and implementation of a simple
isomorphic fluorescent dC analog 5 that, upon incorporation
into an oligonucleotide, photophysically distinguishes be-
tween 8-oxoG and G on the complementary strand. Not only
is the damaged 8-oxoG-containing duplex highly quenched
and the “repaired” G-containing duplex more emissive, the
transverse mutated duplex containing T instead of G displays
the most intense emission. This furan-containing emissive
nucleobase therefore provides signature emission profiles for
all key nucleobases involved in this DNA damage pathway
(Figure 1).14
Scheme 1
.
Synthesis of Furan dC Analog 5 and Its
Corresponding Amidite
The primary design principle for minimally perturbing
emissive nucleobases dictates maintaining the highest possible
structural similarity to the natural nucleobases, while signifi-
cantly improving their photophysical properties.15,16 Specifi-
cally, an isolated absorption band for selective excitation,
enhanced quantum yield over the native nucleobases, and
sensitivity to changes in the microenvironment are desired.
(7) (a) Shigenaga, M. K.; Ames, B. A. Free Radical Biol. Med. 1991,
10, 211–216. (b) Muller, J. G.; Duarte, V.; Hickerson, R. P.; Burrows, C. J.
Nucleic Acids Res. 1998, 26, 2247–2249. (c) Ropp, P. A.; Thorp, H. H.
Chem. Biol. 1999, 6, 599–605. (d) Pouget, J.-P.; Douki, T.; Richard, M.-J.;
Cadet, J. Chem. Res. Toxicol. 2000, 13, 541–549. (e) Soultanakis, R. P.;
Melamede, R. J.; Bespalov, I. A.; Wallace, S. S.; Beckman, K. B.; Ames,
B. N.; Taatjes, D. J.; Janssen-Heininger, Y. M. Free Radical Biol. Med.
2000, 28, 987–998. (f) Persinger, R. L.; Melamede, R.; Bespalov, I.;
Wallace, S.; Taatjes, D. J.; Janssen-Heininger, Y. Exp. Gerontol. 2001, 36,
1483–1494. (g) Gore, M. R.; Szalai, V. A.; Ropp, P. A.; Yang, I. V.;
Silverman, J. S.; Thorp, H. H. Anal. Chem. 2003, 75, 6586–6592
(8) For fluorescence-based kinetic analysis of 8-oxoG DNA glycosylase;
see: Kuznetsov, N. A.; Koval, V. V.; Nevinsky, G. A.; Douglas, K. T.;
Zharkov, D. O.; Fedorova, O. S. J. Biol. Chem. 2007, 282, 1029–1038
(9) (a) Oliveira Brett, A. M.; Piedade, J. A. P.; Serrano, S. H. P.
.
version of the acetate-protected furan-modified dU analog 3 to
the desired dC analog 5 is accomplished by activation of the 4
position as an aryl sulfonate ester followed by a displacement
reaction with ammonia,19 providing the fully deprotected furan-
modified dC analog 5 (Scheme 1).17a,20 Silyl protection of the
furan-modified dU 4 facilitated the conversion to the dC
analog 6 with retention of hydroxyl protection, thus allowing
for standard benzamide protection of the exocyclic amine
to give 7. Desilylation and protection of the 5′-hydroxyl as
the 4,4′-dimethoxytrityl derivative (9) followed by phosphi-
tylation of the unprotected 3′-hydroxyl afforded 10, the
building block necessary for automated DNA synthesis
(Scheme 1).20
.
Electroanalysis 2000, 12, 969–973. (b) Diculescu, V. C.; Chiorcea Paquim,
A.-M.; Oliveira Brett, A.-M. Sensors 2005, 5, 377–393
.
(10) (a) Berger, M.; Anselmino, C.; Mouret, J.-F.; Cadet, J. J. Liq.
Chromatogr. 1990, 13, 929–940. (b) Goyal, R. N.; Dryhurst, G. J.
Electroanal. Chem. 1992, 135, 75–91. (c) Yanagawa, H.; Ogawa, Y.; Ueno,
M. J. Biol. Chem. 1992, 267, 13320–13326
.
(11) (a) Xue, L.; Greenberg, M. M. J. Am. Chem. Soc. 2007, 129, 7010–
7011. (b) Xue, L.; Greenberg, M. M. Angew. Chem., Int. Ed. 2007, 46,
561–564.
(12) Torimura, M.; Kurata, S.; Yamada, K.; Yokomaku, T.; Kamagata,
Y.; Kanagawa, T.; Kurane, R. Anal. Sci. 2001, 17, 155–160.
(13) A modified G-clamp was reported to be quenched by 8-oxoG, but
detecting the damaged base was limited to nucleosides in chloroform and
micellar solutions. See: Nakagawa, O.; Ono, S.; Li, Z.; Tsujimoto, A.;
Sasaki, S. Angew. Chem., Int. Ed. 2007, 46, 4500–4503.
The absorption spectrum of an aqueous solution of 5 shows,
in addition to the typical high energy band seen in the parent
(14) For other emissive C analogs, see: (a) Godde, F.; Toulme, J. J.;
Moreau, S. Nucleic Acids Res. 2000, 28, 2977–2985. (b) Wilhelmsson,
L. M.; Holme´n, A.; Lincoln, P.; Nielsen, P. E.; Norde´n, B. J. Am. Chem.
Soc. 2001, 123, 2434–2435. (c) Liu, C. H.; Martin, C. T. J. Biol. Chem.
2002, 277, 2725–2731. (d) Okamoto, A.; Tainaka, K.; Saito, I. J. Am. Chem.
Soc. 2003, 125, 4972–4973. (e) Berry, D. A.; Jung, K. Y.; Wise, D. S.;
Sercel, A. D.; Pearson, W. H.; Mackie, H.; Randolph, J. B.; Somers, R. L.
Tetrahedron Lett. 2004, 45, 2457–2461. (f) Engman, K. C.; Sandin, P.;
Osborne, S.; Brown, T.; Billeter, M.; Lincoln, P.; Norde´n, B.; Albinsson,
B.; Wilhelmsson, L. M. Nucleic Acids Res. 2004, 32, 5087–5095. (g)
Tinsley, R. A.; Walter, N. G. RNA 2006, 12, 522–529. (h) Marti, A. A.;
Jockusch, S.; Li, Z. M.; Ju, J. Y.; Turro, N. J. Nucleic Acids Res. 2006, 34,
e50. (i) Wojciechowski, F.; Hudson, R. H. E. J. Am. Chem. Soc. 2008,
130, 12574–12575.
(15) Greco, N. J.; Tor, Y. J. Am. Chem. Soc. 2005, 127, 10784–10785.
Greco, N. J.; Tor, Y. Nat. Protoc. 2007, 2, 305–316.
(16) Srivatsan, S. G.; Greco, N. J.; Tor, Y. Angew. Chem., Int. Ed. 2008,
47, 6661–6665.
(17) (a) Greco, N. J.; Tor, Y. Tetrahedron 2007, 63, 3515–3527. (b)
Tor, Y.; Del Valle, S.; Jaramillo, D.; Srivatsan, S. G.; Rios, A.; Weizman,
H. Tetrahedron 2007, 63, 3608–3614.
(18) (a) Srivatsan, S. G.; Tor, Y. J. Am. Chem. Soc. 2007, 129, 2044–
2053. Srivatsan, S. G.; Tor, Y. Tetrahedron 2007, 63, 3601–3607. (b)
Srivatsan, S. G.; Tor, Y. Nat. Protoc. 2007, 2, 1547–1555.
(19) Li, S.-N.; Piccirilli, J. A. J. Org. Chem. 2004, 69, 4751–4759.
(20) See Supporting Information for experimental details.
1116
Org. Lett., Vol. 11, No. 5, 2009