C. C. Musonda et al. / Bioorg. Med. Chem. Lett. 19 (2009) 401–405
405
Compound 5: 1H NMR (400 MHz, CDCl3) d ppm 2.68 (s, 3H), 3.27 (s, 6H), 7.28–
7.32 (m, 1H), 7.72–7.77 (m, 1H), 8.36 (d, J = 7.8 Hz, 1H), 8.75 (d, J = 3.9 Hz, 1H).
Compound 7: 1H NMR (400 MHz, CDCl3) d ppm 1.92–2.11 (m, 4H), 2.64 (s, 3H),
3.57–3.66 (m, 4H), 7.28–7.34 (m, 1H), 7.76–7.81 (m, 1H), 8.41 (d, J = 7.8 Hz,
1H), 8.77 (d, J = 4.7 Hz, 1H).
The low molecular weight, ease of synthesis and low cLogP of com-
pounds 5 and 7 lend themselves to being interesting starting
points for a hit-to-lead generation project against L. donovani.
Compound 10: 1H NMR (400 MHz, CDCl3) d ppm 2.03–2.10 (m, 2H), 2.62 (s,
3H), 2.78 (t, J = 7.4 Hz, 2H), 3.67–3.71 (m, 2H), 5.44 (br s, 1H), 7.20–7.24 (m,
3H), 7.29–7.37 (m, 3H), 7.76–7.82 (m, 1H), 8.33 (d, J = 8.2 Hz, 1H), 8.81 (d,
J = 4.7 Hz, 1H).
Acknowledgements
We thank the WHO-TDR Special Programme for Research and
Training in Tropical Diseases for a postdoctoral fellowship (C.M.)
and for support for the biological screening of the compounds
(R.B.).
Compound 21: 1H NMR (400 MHz, CD3OD)
d ppm 2.52 (s, 3H), 3.05 (t,
J = 7.0 Hz, 2H), 3.94 (t, J = 7.0 Hz, 2H), 7.35 (d, J = 6.2 Hz, 2H), 7.48–7.52 (m, 1H),
7.93–7.98 (m, 1H), 8.35 (d, J = 7.9 Hz, 1H) 8.37 (d, J = 6.2 Hz, 2H) 8.68 (d,
J = 3.9 Hz, 1H).
Compound 25: 1H NMR (400 MHz, CDCl3) d ppm 1.90–2.02 (m, 2H), 2.03–2.10
(m, 1H), 2.37–2.46 (m, 1H), 2.59 (s, 3H), 4.01–4.06 (m, 1H), 4.29–4.35 (m, 1H),
5.61 (t, J = 6.6 Hz, 1H), 7.16–7.19 (m, 1H), 7.24–7.30 (m, 5H), 7.62–7.67 (m, 1H),
7.87 (d, J = 7.8 Hz, 1H), 8.72 (d, J = 3.9 Hz, 1H).
References and notes
Compound 26: 1H NMR (400 MHz, CDCl3) d ppm 1.76–1.86 (m, 2H), 1.92–2.01
(m, 2H), 2.62–2.69 (m, 1H), 2.68 (s, 3H), 3.34 (dd, J = 13.3, 3.5 Hz, 1H), 3.50 (d,
J = 5.1 Hz, 1H), 3.81–3.87 (m, 1H), 4.01–4.08 (m, 1H), 7.23 (m, 1H), 7.28–7.32
(m, 4H), 7.35–7.38 (m, 1H), 7.81 (m, 1H), 8.41 (d, J = 7.8 Hz, 1H) 8.83 (d,
J = 3.9 Hz, 1H).
1. Snow, R. W.;Guerra, C. A.; Noor, A. M.;Myint, H. Y.;Hay, S. I. Nature 2005, 434, 214.
2. White, N. J. Science 2008, 320, 330.
3. Croft, S. L.; Coombs, G. H. Trends Parasitol. 2003, 19, 502.
4. (a) Sundar, S. Trop. Med. Int. Health 2001, 6, 849; (b) Croft, S. L.; Sundar, S.;
Fairlamb, A. H. Clin. Microbiol. Rev. 2006, 19, 111.
9. Nguyen, C.; Kasinathan, G.; Leal-Cortijo, I.; Musso-Buendia, A.; Kaiser, M.; Brun,
R.; Ruiz-Pérez, L. M.; Johansson, N. G.; González-Pacanowska, D.; Gilbert, I. H. J.
Med. Chem. 2005, 48, 5942.
10. (a) Leeson, P.; Springthorpe, B. Nat. Rev. Drug Disc. 2007, 6, 881; (b) Hughes, J.
D.; Blagg, J.; Price, D. A.; Bailiey, S.; DeCrescenzo, G. A.; Devraj, R. V.; Ellsworth,
E.; Fobian, Y. M.; Gibbs, M. E.; Gilles, R. W.; Greene, N.; Huang, E.; Krieger-
Burke, T.; Loesel, J.; Wager, T.; Whiteley, L.; Zhang, Y. Bioorg. Med. Chem. Lett.
2008, 18, 4872.
5. Chen, X.; Chong, C. R.; Shi, L.; Yashimoto, T.; Sullivan, D. J.; Liu, O. Proc. Natl.
Acad. Sci. U.S.A. 2006, 103, 14548.
6. Nwaka, S.; Hudson, A. Nat. Rev. Drug Disc. 2006, 5, 941.
7. Zhang, P.; Nicholson, D. E.; Bujnicki, J. M.; Su, X.; Brendle, J. J.; Ferdig, M.; Kyle,
D. E.; Milhous, W. K.; Chiang, P. K. J. Biomed. Sci. 2002, 9, 34.
8. Final compounds were characterized by 1H NMR and LC–MS analysis, and all
data was in agreement with the assigned structures. Representative 1H NMR
data is outlined below: