A. D. Lebsack et al. / Bioorg. Med. Chem. Lett. 19 (2009) 40–46
45
demonstrated the importance of a thiazolo[5,4-d]pyrimidine core
to maintain TRPV1 potency over related analogues such as thiazol-
o[4,5-d]pyrimidine 4 or a benzothiazole 5. An exploration of the
structure–activity relationships at the 2-, 5-, and 7-positions of
the thiazolo[5,4-d]pyrimidine led to the identification of several
potent TRPV1 antagonists including 3, 29, 51, and 57. Further eval-
uation of compound 3 in a rat model of carrageenan-induced ther-
mal hyperalgesia afforded
a significant reversal of thermal
hyperalgesia with an ED50 = 0.5 mg/kg.
References and notes
1. Caterina, M. J.; Schumacher, M. A.; Tominaga, M.; Rosen, T. A.; Levine, J. D.;
Julius, D. Nature 1997, 389, 816.
2. (a) Montell, C.; Birnbaumer, L.; Flockerzi, V.; Bindels, R. J.; Bruford, E. A.;
Caterina, M. J.; Clapham, D. E.; Harteneck, C.; Heller, S.; Julius, D.; Kojima, I.;
Mori, Y.; Penner, R.; Prawitt, D.; Scharenberg, A. M.; Schultz, G.; Shimizu, N.;
Zhu, M. X. Mol. Cell 2002, 9, 229; (b) Gunthorpe, M. J.; Benham, C. D.; Randall,
A.; Davis, J. B. Trends Pharmacol. Sci. 2002, 23, 183.
Figure 7. Functional effect of compound 3 (n = 4) in isolated rat bladder compared
with vehicle (n = 6). Tissue contraction is expressed as percentage of KCl (70 mM)-
induced tone.
3. (a) Szallasi, A.; Blumberg, P. M. Pharmacol. Rev. 1999, 51, 159; (b) Appendino,
G.; Munoz, E.; Fiebich, B. L. Expert Opin. Ther. Patents 2003, 13, 1825; (c)
Caterina, M. J.; Julius, D. Annu. Rev. Neurosci. 2001, 24, 487.
4. See Refs. 1,2, and 6b.
5. (a) Caterina, M. J.; Leffler, A.; Malmberg, A. B.; Martin, W. J.; Trafton, J.;
Petersen-Zeitz, K. R.; Koltzenburg, M.; Basbaum, A. I.; Julius, D. Science 2000,
288, 306; (b) Davis, J. B.; Gray, J.; Gunthorpe, M. J.; Hatcher, J. P.; Davey, P. T.;
Overend, P.; Harries, M. H.; Latcham, J.; Clapham, C.; Atkinson, K.; Hughes, S. A.;
Rance, K.; Grau, E.; Harper, A. J.; Pugh, P. L.; Rogers, D. C.; Bingham, S.; Randall,
A.; Sheardown, S. A. Nature 2000, 405, 183.
6. For recent TRPV1 reviews see (a) Breitenbucher, J. G.; Chaplan, S. R.; Carruthers,
N. I. Annu. Rep. Med. Chem. 2005, 40, 185; (b) Westaway, S. A. J. Med. Chem.
2007, 50, 2589; (c) Szallasi, A.; Gharat, L. A. Expert Opin. Ther. Patents 2008, 18,
159.
7. The synthesis and structure–activity relationships of 5,6,7,8-tetrahydro-
pyrido[3,4-d]pyrimidines as TRPV1 antagonists will be reported in due
course. In addition to our own efforts, preparations of 5,6,7,8-tetrahydro-
pyrido[3,4-d]pyrimidines as TRPV1 receptor modulators have been reported in
the patent literature. (a) Kelly, M. G.; Janagani, S.; Wu, G.; Kincaid, J.; Lonergan,
D.; Fang, Y.; Wei, Z. PCT Int. Appl. WO2005066171, 2005. (b) Norman, M. H.;
Ognyanov, V. I.; Pettus L. H. US Patent 0165032, 2005. (c) Lee, C.; Brown, B. S.;
Keddy, R. G.; Perner, R. J.; Koenig, J. R. PCT Int. Appl. WO2006062981, 2006.
8. For accounts of TRPV1 antagonists with other relevant heterocyclic cores see:
(a) Bakthavatchatam, R.; Blum, C. A.; Brielmann, H. L.; Caldwell, T. M.; De
Lombaert, S. PCT Int. Appl. WO2003062209, 2003. (b) Allison, B. D.; Branstetter,
B. J.; Breitenbucher, J. G.; Hack, M. D.;Hawryluk, N. A.; Lebsack, A. D.; McClure,
K. J.; Merit, J. E. PCT Int. Appl. WO2007109355, 2007.
9. For single step synthesis of 2-amino-7-chloro-thiazolo[5,4-d]pyrimidine see
Liu, J.; Patch, R. J.; Schubert, C.; Player, M. R. J. Org. Chem. 2005, 70, 10194.
10. (a) Lebsack, A. D.; Branstetter, B. J.; Xiao, W.; Hack, M. D.; Nasser, N.; Maher, M.
P.; Ao, H.; Bhattacharya, A.; Kansagara, M.; Scott, Brian P.; Luo, L.; Chaplan, S.
R.; Wickenden, A. D.; Breitenbucher, J. G. Abstracts of Papers, 236th ACS
National Meeting, Philadelphia, PA, United States, August 17–21, 2008; MEDI-
467.; Thiazole-4-carboxamides containing a 2,6-dichlorophenyl group have
been reported as TRPV1 antagonists (b) Xi, N.; Bo, Y.; Doherty, E. M.; Fotsch, C.;
Gavva, N. R.; Han, N.; Hungate, R. W.; Klionsky, L.; Liu, Q.; Tamir, R.; Xu, S.;
Treanor, J. J. S.; Norman, M. H. Bioorg. Med. Chem. Lett. 2005, 15, 5211.
11. Bhattacharya, A.; Scott, B. P.; Nasser, N.; Ao, H.; Maher, M. P.; Dubin, A. E.;
Swanson, D. M.; Shankley, N. P.; Wickenden, A. D.; Chaplan, S. R. J. Pharmacol.
Exp. Ther. 2007, 323, 665.
Figure 8. Representative data showing the effect of 3 on carrageenan-induced
thermal hyperalgesia in rats, n = 6/group (dosed po in 5% pharmasolve/20% RH-40
cremophor/75% dextrose (5%) in water, administered 1h prior to carrageenan
injection).
In addition to the in vitro data obtained for compound 3 in re-
combinant systems, we also examined compound 3 in a native tis-
sue (Fig. 7).11 Isolated longitudinal strips of rat bladder were used
to record capsaicin-induced isometric contractions. The potency
(EC50) of capsaicin shifted from 70 to 420 nM (6-fold) in the pres-
ence of 100 nM of compound 3, without suppression of the maxi-
mal tissue contractility.
When dosed orally, compound 3 was efficacious in a carra-
geenan-induced thermal hyperalgesia model in rats (Fig. 8).23
Compound 3 significantly prevented development of thermal
hyperalgesia at 1, 3, and 30 mg/kg compared with vehicle
(p < 0.001). When expressed as % maximal possible effect (%
MPE), the maximal degree of inhibition was approximately 57%
(in rats treated with 3 mg/kg at 4 h post-carrageenan injection).
The dose required for 50% of the maximum effect achieved by com-
pound 3 in the carrageenan model was approximately 0.5 mg/
kg po. Compound 3 did not affect basal paw withdraw latency of
the contralateral hind paws. Compound 3 plasma concentrations
determined at the end of each experiment (approximately 5 h
post-carrageenan injection) were 10 2 nM (n = 6), 58 17 nM
(n = 7), 428 40 nM (n = 7), and 3052 444 nM (n = 7) in animals
dosed orally with 0.3, 1, 3, and 30 mg/kg, respectively.
12. MOE (The Molecular Operating Environment) Version 2006.08, software
available from Chemical Computing Group Inc., 1010 Sherbrooke Street
13. MacroModel, version 9.5, Schrodinger, LLC, New York, NY, 2007.
14. Jaguar, version 7.0, Schrodinger, LLC, New York, NY, 2007.
15. ROCS (Rapid Overlay of Chemical Structures), version 2.3.1, OpenEye Scientific
16. Branstetter, B. J.; Breitenbucher, J. G.; Lebsack, A. D.; Xiao, W. US Patent Appl.
2008, 004253.
17. Spectroscopic methods including 2D NMR 1H/13C HSQC and HMBC were used
to confirm the structure of compound 8 and therefore 7b. In the HMBC, a
strong 3-bond coupling was observed between the proton on the N-methyl and
the two adjacent quaternary carbons for compound 8.
CF3
N
N
N
H
S
N
Cl
Cl
N
H
In summary, we have identified a series of 2,7-diamino-thiazol-
o[5,4-d]pyrimidines as potent TRPV1 antagonists. Initial studies
8