Table 4 Crystal data for 1, 4a, 4b, and 5
1
4a·1.3CH2Cl2
4b·0.5CH2Cl2
5·1.375CH2Cl2
Formula
Mr
C46H44P4S2Mo
880.81
C51.6H45.2O4P4S2Cl3.2MoRh2
1332.54
C50.5H43O4P4S2ClMoRh2
1239.11
C51.38H44.75O4P4S2Cl2.75MoIr2
1492.12
Monoclinic
C2/c (no. 15)
41.213(9)
12.066(2)
21.619(4)
95.852(1)
10 695(4)
8
1.853
0.50 ¥ 0.20 ¥ 0.10
54.96
293
12 245
5474
638
Crystal system
Space group
Monoclinic
P21/c (no. 14)
14.054(3)
12.073(2)
25.259(5)
103.749(1)
4163(2)
4
1.405
0.40 ¥ 0.20 ¥ 0.10
55.74
293
9892
5700
528
Monoclinic
C2/c (no. 15)
41.234(1)
11.9799(4)
21.7291(9)
96.1025(7)
10 673.0(7)
8
1.658
0.10 ¥ 0.10 ¥ 0.10
54.96
293
12 020
8735
638
Monoclinic
P21/c (no. 14)
13.709(4)
17.143(4)
20.980(5)
101.070(1)
4839(2)
˚
a/A
˚
b/A
˚
c/A
b/◦
3
˚
V/A
Z
4
Dc/Mg m-3
1.701
0.50 ¥ 0.20 ¥ 0.10
54.96
293
11 062
5033
624
Crystal size/mm3
◦
2qmax
T/K
/
Unique reflections
Data of I > 2s(I)
Variables
Transmission factor
0.643–1.000
0.038
0.130
0.586–0.883
0.037
0.114
0.661–0.883
0.063
0.201
0.293–0.572
0.049
0.177
a
R1
wR2
b
GOFc
1.013
1.018
1.076
1.032
ꢀ
ꢀ
ꢀ
ꢀ
ꢀ
a R1 = ꢀFo| - |Fcꢀ/ |Fo| (I > 2s(I)). b wR2 = [ (w(Fo - Fc2)2)/ w(Fo2)2]1/2 (all data). c GOF = [ w(|Fo| - |Fc|)2/{(no. observed) - (no.
2
variables)}]1/2
.
were sealed in glass capillaries under argon and mounted on a
Rigaku Mercury-CCD diffractometer equipped with a graphite-
monochromatized Mo Ka source. Data collections were per-
formed by using the CrystalClear program package.14 All data
were corrected for absorption.
Catalysis”) from the Ministry of Education, Culture, Sports,
Science and Technology, Japan.
References
Structure solution and refinements were conducted by us-
ing the Crystal Structure program package.15 The positions of
non-hydrogen atoms were determined by Patterson methods
(PATTY)16 and subsequent Fourier synthesis (DIRDIF99),17
which were refined by full-matrix least-squares techniques. Hy-
drogen atoms were placed at the calculated positions and included
at the final stages of the refinements with fixed parameters.
For 1, the SH hydrogens were found in the Fourier map and
refined isotropically. In 4a·1.3CH2Cl2, two CH2Cl2 molecules
are disordered, where the population of the molecule near the
2-fold axis is 0.6. All non-hydrogen atoms in these molecules were
refined isotropically, while hydrogens were not added. Some C–Cl
bonds were restrained. For 4b·0.5CH2Cl2, the solvating CH2Cl2
molecules, which are present around the inversion center, are
disordered and their structures were refined isotropically with
restraints of bond lengths and angles with hydrogens at the
calculated positions. In 5·1.375CH2Cl2, both solvating CH2Cl2
molecules are disordered, for which the Cl atoms were refined
anisotropically, while the C atoms were refined isotropically.
Hydrogens were not included. The population of the molecule
near the 2-fold axis was found to be 0.75. For the other molecule,
refinements were carried out with the restrained C–Cl bonds.
CCDC numbers are 719133–719136 for 1, 4a·1.3CH2Cl2,
4b·0.5CH2Cl2, and 5·1.375CH2Cl2, respectively.
1 (a) S. Kuwata and M. Hidai, Coord. Chem. Rev., 2001, 213, 211; (b) M.
Peruzzini, I. de Los Rios and A. Romerosa, Prog. Inorg. Chem., 2001,
49, 169.
2 (a) M. Hidai and Y. Mizobe, Can. J. Chem., 2005, 83, 358; (b) M. Hidai,
S. Kuwata and Y. Mizobe, Acc. Chem. Res., 2000, 33, 46.
3 For recent examples, see: (a) K. Oya, T. Amitsuka, H. Seino and Y.
Mizobe, J. Organomet. Chem., 2007, 692, 20; (b) H. Kajitani, H. Seino
and Y. Mizobe, Organometallics, 2007, 26, 3499; (c) W.-Y. Yeh, H. Seino,
T. Amitsuka, S. Ohba, M. Hidai and Y. Mizobe, J. Organomet. Chem.,
2004, 689, 2338.
4 (a) H. Kato, H. Seino, Y. Mizobe and M. Hidai, J. Chem. Soc., Dalton
Trans., 2002, 1494; (b) H. Kato, H. Seino, Y. Mizobe and M. Hidai,
Inorg. Chim. Acta, 2002, 339, 188; (c) S. Kuwata, T. Nagano, A.
Matsubayashi, Y. Ishii and M. Hidai, Inorg. Chem., 2002, 41, 4324; (d) S.
Kabashima, S. Kuwata and M. Hidai, J. Am. Chem. Soc., 1999, 121,
7837; (e) T. Nagano, S. Kuwata, Y. Ishii and M. Hidai, Organometallics,
2000, 19, 4176; (f) S. Kuwata, S. Kabashima, Y. Ishii and M. Hidai,
J. Am. Chem. Soc., 2001, 123, 3826; (g) S. Kuwata, S. Kabashima,
N. Sugiyama, Y. Ishii and M. Hidai, Inorg. Chem., 2001, 40, 2034;
(h) M. A. F. Hernandez-Gruel, J. J. Pe´rez-Torrente, M. A. Ciriano, A. B.
Rivas, F. J. Lahoz, I. T. Dobrinovitch and L. A. Oro, Organometallics,
2003, 22, 1237; (i) M. A. Casado, J. J. Pe´rez-Torrente, M. A. Ciriano,
A. J. Edwards, F. J. Lahoz and L. A. Oro, Organometallics, 1999, 18,
5299; (j) M. A. Casado, M. A. Ciriano, A. J. Edwards, F. J. Lahoz,
L. A. Oro and J. J. Pe´rez-Torrente, Organometallics, 1999, 18, 3025;
(k) D. A. Dobbs and R. G. Bergman, Inorg. Chem., 1994, 33, 5329;
(l) K. Arashiba, H. Iizuka, S. Matsukawa, S. Kuwata, Y. Tanabe, M.
Iwasaki and Y. Ishii, Inorg. Chem., 2008, 47, 4264.
5 C. Arita, H. Seino, Y. Mizobe and M. Hidai, Bull. Chem. Soc. Jpn.,
2001, 74, 561.
6 (a) H. Seino, D. Watanabe, T. Ohnishi, C. Arita and Y. Mizobe, Inorg.
Chem., 2007, 46, 4784; (b) T. Ohnishi, H. Seino, M. Hidai and Y.
Mizobe, J. Organomet. Chem., 2005, 690, 1140; (c) H. Seino, C. Arita,
M. Hidai and Y. Mizobe, J. Organomet. Chem., 2002, 658, 106.
7 M. L. H. Green and W. E. Lindsell, J. Chem. Soc. A, 1967, 1455.
8 N. Dupre´, H. M. J. Hendriks and J. Jordanov, J. Chem. Soc., Dalton
Trans., 1984, 1463.
Acknowledgements
This work was supported by the Grant-in-Aid for Scientific Re-
search on Priority Areas (No. 18065005, “Chemistry of Concerto
This journal is
The Royal Society of Chemistry 2009
Dalton Trans., 2009, 6134–6140 | 6139
©